La protéine GFP a initialement été isolée de la méduse Aequorea victoria en 1962 par Shimomura et coll. Son gène a été cloné en 1992 par Prasher et coll.
La GFP est une protéine de 238 acides aminés, acide, compacte et globulaire, possédant une masse moléculaire de 27 kDa. De nombreux mutants de la GFP sauvage ont pu être isolés par chromatographie échangeuse d'ions ou focalisation isoélectrique. D'autre part, des mutants de la GFP présentant un gain de fonction, c'est-à-dire une augmentation de l'intensité de la fluorescence, ont été générés par différentes techniques. Ainsi, la substitution du codon sérine 65 par un codon thréonine dans le clone GFP-S65T décale la longueur d'onde d'excitation en un unique pic à 490 nm. Afin d'obtenir une expression plus importante chez les cellules humaines ou d'autres mammifères, un clone dénommé hGFP-S65T, possédant des codons " humanisés ", a été réalisé par Zolotukhin et coll. en 1996. Le gène gfp sauvage contient plusieurs codons qui ne sont pas communément utilisés chez les mammifères : plus de 190 mutations silencieuses y ont ainsi été incorporées. Ces mutations permettent d'obtenir une protéine 35 fois plus fluorescente que la GFP sauvage et 5 à 10 fois plus exprimée dans les cellules de mammifères. L'expression endogène ou hétérologue de la GFP ne requiert l'addition d'aucun groupe prosthétique (protéines, substrats ou co-facteurs d'Aequorea) pour être fluorescente. Elle acquiert ses propriétés de fluorescence par un mécanisme autocatalytique de formation du fluorophore. La GFP a été exprimée de manière hétérologue dans des cellules et organismes aussi divers que les bactéries, les levures, les cellules eucaryotes animales et végétales.
Introduction
Durant l’année 2000, un professeur d’esthétique à l’université de Chicago, Eduardo Kac, a demandé à des scientifiques d’un laboratoire de biotechnologie (2) de modifier génétiquement un lapin avec un gène de méduse. Alba, la lapine résultant de cette manipulation génétique possédait la particularité de renvoyer sous la lumière ultra violette une faible lueur vert fluorescent.
Durant l’année 2000, un professeur d’esthétique à l’université de Chicago, Eduardo Kac, a demandé à des scientifiques d’un laboratoire de biotechnologie (2) de modifier génétiquement un lapin avec un gène de méduse. Alba, la lapine résultant de cette manipulation génétique possédait la particularité de renvoyer sous la lumière ultra violette une faible lueur vert fluorescent.
Précisons bien que les intentions de Kac étaient de nature artistique : il escomptait en effet s’exposer en compagnie de l’animal en question dans une sorte de « tableau domestique » en France.
« L’art transgénique crée des êtres vivants uniques. » Kac dixit
OKac publie régulièrement sur Internet (3) des articles tout à fait fumeux sur la dernière lubie artistique du moment : l’art transgénique. À grand renfort de sophismes, il tente de justifier ce qui est, en termes moraux et écologiques, profondément révoltant. Ses prétentions, tout comme celle des généticiens, sont proprement intenables. En effet, il serait, selon ses dires, en train de créer une nouvelle forme de vie « artistique » : « L’art transgénique est un art nouveau, transférant grâce à la génétique des gènes naturels ou synthétiques dans un organisme ; ainsi il permet la création d’êtres vivants uniques. »
OKac publie régulièrement sur Internet (3) des articles tout à fait fumeux sur la dernière lubie artistique du moment : l’art transgénique. À grand renfort de sophismes, il tente de justifier ce qui est, en termes moraux et écologiques, profondément révoltant. Ses prétentions, tout comme celle des généticiens, sont proprement intenables. En effet, il serait, selon ses dires, en train de créer une nouvelle forme de vie « artistique » : « L’art transgénique est un art nouveau, transférant grâce à la génétique des gènes naturels ou synthétiques dans un organisme ; ainsi il permet la création d’êtres vivants uniques. »
Le fait qu’un lapin non génétiquement modifié soit déjà un être vivant unique ne semble même pas l’effleurer.
En réalité, Kac n’a rien fait de plus que les généticiens, sans compter que ce sont ces derniers qui ont mené à bien son projet ! (4) Malgré cela, sans avoir eu à déployer un talent artistique quelconque, Kac jouit d’une audience importante. Or son seul « mérite » a été l’autopromotion de sa personne. Tel un républicain avisé, il savait que la manipulation génétique d’un lapin allait faire scandale. Ce qui ne l’empêche pas aujourd’hui de confesser bruyamment son attachement à l’animal et son intention de l’intégrer à sa famille.
Ses divagations sur Internet sont nourries de propos passionnés sur son nouveau mutant et sur la façon de traiter en toute moralité un tel artefact. Mais comme les scientifiques français hésitent à livrer l’animal aux mains de Kac, celui-ci mène aujourd’hui une bataille juridique pour sa garde, trahissant au demeurant des réflexes de propriétaire tout à fait conservateurs vis-à-vis du dernier né de sa famille, malgré la très haute moralité dont il se targue dans son site de pub.
À grand renfort de battage médiatique (5), Kac a su monter son événement artistique de façon à attirer l’attention sur sa personne. Il faut dire que son attrape-nigaud transgénique est tout à fait représentatif d’un art dont les origines sont à chercher dans le courant Dada (6) des années 1910-1920. Revisiter sans relâche l’inspiration Dada et d’autres courants du moderisme relève bien de la tradition post-moderne. (7) Pourtant, on peut se demander à quoi rime ce jeu transgénique absurde, sinon cruel, entre le lapin et la méduse.
C’est une question digne d’être posée si l’on veut remettre en cause la croyance répandue selon laquelle les artistes ne sont sincères que lorsque leurs œuvres sont dérisoires, amorales et nihilistes ? Ils ne feraient en effet – d’après ce qu’on entend souvent – que promener un miroir le long du chemin de notre civilisation. Le lignage de cet art, issu de Marcel Duchamp (8), est aujourd’hui incarné par des individus tels que Damien Hirst. Or, les travaux de ces artistes ne sont que des reproductions d’objets, de processus ou d’évènements qui nous entourent. La très médiatique Biennale de Venise est pleine à craquer de ce genre de travaux, considérés comme représentatifs de l’art contemporain.
L’approche reproductive Dada/nihiliste est bien le produit de la société de consommation moderne. On mettra certes au crédit de cet art sa franche crudité, mais c’est la crudité des clichés du photographe-reporter : dénués de toute signification, ils ne donnent à voir que superficialité et incohérence. Tout sens, toute ouverture à un ordre naturel ou cosmologique sont rejetés, et n’y demeurent que les idées philosophiques les plus rebattues.
Or ce courant artistique oublie que, dans le purgatoire d’une civilisation troublée comme la nôtre, la plupart des esprits aspirent encore au sens. Pour tout escroc artistique comme Andy Warhol avec à son actif les clichés artistiques dérisoires de son époque, on peut compter, tout au long de l’ère moderne et post moderne, nombre de bons artistes attachés à l’expression d’un sens. La plupart de ces artistes sont inconnus, mais ils ont le mérite d’exprimer les liens psychiques entre l’humanité et la nature, la communauté et le sacré. Messiaen le Messie
Certains de ces artistes, comme par exemple Messiaen, compositeur français mystique (1908-1992) sont devenus célèbres. Messiaen est une figure intéressante pour notre propos : en effet, il a pris en charge les crises de la musique du 20ème siècle symbolisée par l’usage de l’atonalité et a su incorporer cette dernière dans un ensemble plus vaste. Des canyons aux étoiles (9) évoque, dans une vision cosmologique, une nature pleine de mystère et propice à l’élévation de l’esprit. Rien de plus éloigné, on en conviendra, du lapin fluorescent.
Certains de ces artistes, comme par exemple Messiaen, compositeur français mystique (1908-1992) sont devenus célèbres. Messiaen est une figure intéressante pour notre propos : en effet, il a pris en charge les crises de la musique du 20ème siècle symbolisée par l’usage de l’atonalité et a su incorporer cette dernière dans un ensemble plus vaste. Des canyons aux étoiles (9) évoque, dans une vision cosmologique, une nature pleine de mystère et propice à l’élévation de l’esprit. Rien de plus éloigné, on en conviendra, du lapin fluorescent.
Messiaen pense que la vérité peut être enchâssée dans la structure musicale et que la transcendance existe. Kac l’exhibitionniste, en revanche, dénie toute essence, toute intégrité et toute identité, comme le montre bien la façon dont il nie l’intégrité du lapin et de la méduse. Lequel de ces deux hommes reflète-t-il mieux le monde moderne ? On serait tenté de pencher pour l’exhibitionniste.
À l’ère de la fission atomique, du génie génétique, de la sociobiologie, de l’intelligence artificielle, et de la spoliation illimitée du monde naturel, une conception nihiliste et absurde du monde ne paraît-elle pas en effet devoir s’imposer ? Ne traversons-nous pas l’âge de la fausse monnaie, des conseillers en communication, des faux-semblants en tous genres ? En ce sens, les réplications d’objets et d’événements ne sont-elles pas le seul art qui reflète fidèlement notre temps ?
Il semble que non. On touche à la vérité de l’histoire et de la vie humaine non par sa reproduction mais par son imitation, non par sa simple copie mais par son interprétation créative. La vérité de notre temps ne se retrouve pas dans ses fragments, mais dans des œuvres qui, conscientes du chaos sans nom de l’univers, en créent une image transcendante et rédemptrice grâce à un moyen langagier, sonore ou visuel.
On pourrait penser que le lapin fluorescent est une image de la vérité étant donné qu’il est une réplique du réel. Les enfants de la production de masse savent qu’un jeu vidéo est une réplique exacte d’un autre, et que toutes les espèces ont été standardisées par la monoculture et le génie génétique. Comme eux, nous croyons que la reproduction du réel est vérité et que la copie vaut l’original. La carrière d’Andy Warhol aussi bruyante que vaine, s’est construite autour de l’idée de reproduction, et cependant, la reproduction n’est qu’absence de vérité et absurdité.
En effet, qu’une voiture Nissan ressemble exactement à une autre, il s’agit là du degré zéro moral et métaphysique, tout comme l’événement artistique de Damien Hirst présentant une vache découpée en tronçons. (10) Ces entreprises-là sont tautologiques car elles produisent quelque chose qui existe déjà dans le monde réel, sans y ajouter le moindre génie intuitif, qualité que ce genre d’art méprise implicitement de toute façon.
La seule vérité que laisse voir la tautologie, c’est le caractère inhérent à notre culture matérialiste de la répétition mécanique. Cette vérité n’est pas pour autant porteuse de sens, car elle est sans rapport avec la vie. Tout art qui s’étend sur des faits triviaux finit inévitablement par leur ressembler. Les vaches découpées en tronçons, les lapins transgéniques sont victimes de cette collaboration avec le néant. Impuissants à combler le vide de sens, les artistes ne s’insurgent même pas contre lui mais se contentent d’ajouter une reproduction à ce qui a déjà été indéfiniment répété.
On y verra certes du réalisme, mais pas l’ombre d’une vérité. Nous sommes encore suffisamment proches de la nature pour savoir que cette dernière ne répète jamais à l’identique ni ne standardise. Prétendre que l’ADN reproduit à l’identique, c’est omettre les variations indéfinies pas lesquelles la nature passe d’une génération à la suivante. La réplication est précisément l’inverse des processus héréditaires, et l’art qui ne repose que sur la reproduction a quelque chose de factice, même s’il prétend se rapporter à notre monde.Victoire à la Pyrrhus
Ce courant artistique s’est inspiré de Pyrrhus, philosophe militaire (365-275 avant J.C.), dont le scepticisme extrême a été revisité avec enthousiasme par Marcel Duchamp dans la première moitié du 20ème siècle. Un tel scepticisme considère la venue au monde de la vie, de l’art, de la pensée, de la sensation et même des choses inanimées comme le fruit d’une distribution hasardeuse de quanta sans valeur et illusoires. Un objet est identique à un autre sans un cosmos où aucune essence véritable n’existe : « Tout se vaut » dit un poème post moderne.
Ce courant artistique s’est inspiré de Pyrrhus, philosophe militaire (365-275 avant J.C.), dont le scepticisme extrême a été revisité avec enthousiasme par Marcel Duchamp dans la première moitié du 20ème siècle. Un tel scepticisme considère la venue au monde de la vie, de l’art, de la pensée, de la sensation et même des choses inanimées comme le fruit d’une distribution hasardeuse de quanta sans valeur et illusoires. Un objet est identique à un autre sans un cosmos où aucune essence véritable n’existe : « Tout se vaut » dit un poème post moderne.
Cette vision du monde est répandue dans le post modernisme, dont la prétention affichée est pourtant de nous « éclairer ». Les traditions religieuses et philosophiques, particulièrement dans les cultures orientales où la transcendance est une aspiration mystique, se retrouvent récupérées et travesties par le relativisme narcissique et cynique qui caractérise les milieux artistiques branchés. Or leurs représentations trahissent une toute autre intention que l’atteinte du nirvana. Elles transpirent l’ennui, la violence gratuite et le narcissisme. Ce dernier est de la pire espèce : non pas le « oui » du « je crée dans je suis » présent dans l’art occidental le plus inspiré, mais le puéril « je veux me faire remarquer donc je suis ». S’exprime là un moi sans amour et fort différent de celui du mystique soucieux de fondre son identité dans l’universel.
L’art contemporain est fondé sur une erreur manifeste, car son mépris de l’essence ignore que les formes de la vie, de la pensée et de la sensation viennent de l’informe. Le chaos, fécond, est une vaste matrice donnant naissance aux étoiles et à la vie. Ces formes transitoires renaissent sans arrêt dans le flux cosmique, fait ignoré de nos esthètes qui dénient ce cycle, ne considérant que l’entropie, le désordre, et non les aspects créateurs de la nature.
Le moi déraciné peut-il alors exprimer authentiquement l’état précaire de la société moderne ? Il le reflètera certes mais n’aura aucune portés salvatrice, alors que dans d’autres sociétés, l’art joue un rôle rédempteur dans le cours troublé du monde, comme la tragédie grecque et certains rituels cathartiques du néolithique et du paléolithique.
À l’inverse, le clonage de l’infortunée Alba et le tronçonnage de la carcasse d’une vache ne permettent aucune catharsis et se réduisent à des lubies dénuées de toute révélation. La prétention de ces « œuvres » inspirées du courant Dada, à forger une critique de la suffisance bourgeoise et du mal-être social n’est plus défendable. L’époque où une telle prétention était encore tenable a pris fin avec la seconde guerre mondiale. Depuis, le geste artistique s’est cantonné dans un cynisme matérialiste, et le bourgeois, bien loin de s’en offusquer, s’en amuse.
Le vingtième siècle a connu de grandes contributions artistiques mais elles ne sont pas le fait d’un Kac, d’un Warhol ou d’un Hirst, tous sous l’emprise de la société de consommation. Elles proviennent d’artistes de grand talent et de grande envergure tels que Dimitri Shostakovich, la poétesse Anna Akhamatova (11), ou encore le chilien Pablo Neruda dont l’œuvre épique et visionnaire « Les Hauteurs du Machu Pichu » (12) décrit la nature et l’histoire du continent sud américain. De tels artistes et d’autres moins connus ont consacré leur vie à se battre pour notre humanité commune.
– Denys Trussel –
L'auteur est critique d’art néo-zélandais. Né en 1946, Denys Trussell est poète, essayiste, musicien et biographe. On lui doit des biographies d’A.R.B. Fairburn, poète néo-zélandais, et du peintre expressionniste anglais Alan Pearson.
Annexe
(1) Rainer Maria Rilke, « Lettres à un jeune poète, Lettre du 23 décembre 1903 ».
(2) Patrick Prunet et Louis-Marie Houdebine, directeur de recherche de l’unité de développement en biologie et en biotechnologies au centre INRA de Jouy-en-Josas. Egalement auteur de « Génie génétique, de l’animal à l’homme : un exposé pour comprendre, un essai pour réfléchir » (Paris, Flammarion 1996) et « Les animaux transgéniques » (Paris, Cachan Tec et Doc 1998).
(3) Louis-Marie Houdebine a tenu à préciser que : « Cet animal n’est pas une fantaisie de chercheur fou. Elle [Alba] est le descendant d’animaux transgéniques primaires. » Le Monde, jeudi 5 octobre 2000.
(4) Voir le site web en français et en anglais.
(5) Tout sur l'art Biotech :
– l’impressionnant dossier de presse française et étrangère sur : http://www.ekac.org/transartbiblio.html
– L'art Biotech en France : http://www.transfert.net/d52
(6) Dada : mouvement artistique fondé en 1916 à Zurich par Tristan Tzara, auteur de Sept manifestes Dada, visant à détruire toute norme esthétique. Ce mouvement a en France été repris en partie par des surréalistes tels que André Breton avec « Manifeste du Surréalisme » (1924).
(7) Olivier Cena, critique d’art à Télérama, précise dans un article intitulé « La floraison des Narcisses » que « Les plus célèbres [des artistes] utilisent les mêmes procédés qu’il y a quarante ans en se contentant de les pousser à leur paroxysme », Télérama n° 2679, 16 mai 2001.
(8) Marcel Duchamp (1887-1968) a inauguré la vogue du « ready-made » en envoyant à l’Armory Show (New York) en 1917 un urinoir intitulé « Fontaine ». Ce premier événement « anti-art » a fait date.
(9) « Des canyons aux étoiles », Olivier Messiaen. Sous la direction d’Esa-Pekka Salonen, London Sinfonietta, Sony Classics.
(10) Damien Hirst a reçu le prix Turner en 1995 décerné par des représentants reconnus du milieu artistique britannique, dont le directeur de la Tate Gallery à Londres. Ce prix a récompensé son exposition « Some went mad some ran away », (Certains sont devenus fous, d’autres se sont enfuis) dont l’ « œuvre » : « Mother and child divided » présentait des vaches découpées dans le sens de la longueur et conservées dans des bacs transparents remplis de formaldéhyde.
(11) Poétesse russe (1886-1966), censurée par le Comité central, elle a laissé des poèmes et une autobiographie (« Requiem ») relatant la répression des années 1930.
(12) Pabo Neruda (1904-1973), « Les Hauteurs du Macchu Picchu », Seghers, coll. Autour du monde, 1999.
Originally published in San Francisco Chronicle, Monday, October 8, 1999, p. B1, B13.
GFP BUNNY | ||
Eduardo Kac My transgenic artwork "GFP Bunny" comprises the creation of a green fluorescent rabbit, the public dialogue generated by the project, and the social integration of the rabbit. GFP stands for green fluorescent protein. "GFP Bunny" was realized in 2000 and first presented publicly in Avignon, France. Transgenic art, I proposed elsewhere [1], is a new art form based on the use of genetic engineering to transfer natural or synthetic genes to an organism, to create unique living beings. This must be done with great care, with acknowledgment of the complex issues thus raised and, above all, with a commitment to respect, nurture, and love the life thus created. WELCOME, ALBA I will never forget the moment when I first held her in my arms, in Jouy-en-Josas, France, on April 29, 2000. My apprehensive anticipation was replaced by joy and excitement. Alba -- the name given her by my wife, my daughter, and I -- was lovable and affectionate and an absolute delight to play with. As I cradled her, she playfully tucked her head between my body and my left arm, finding at last a comfortable position to rest and enjoy my gentle strokes. She immediately awoke in me a strong and urgent sense of responsibility for her well-being. | Eduardo Kac and Alba, the fluorescent bunny. Photo: Chrystelle Fontaine |
Alba is undoubtedly a very special animal, but I want to be clear that her formal and genetic uniqueness are but one component of the "GFP Bunny" artwork. The "GFP Bunny" project is a complex social event that starts with the creation of a chimerical animal that does not exist in nature (i.e., "chimerical" in the sense of a cultural tradition of imaginary animals, not in the scientific connotation of an organism in which there is a mixture of cells in the body) and that also includes at its core: 1) ongoing dialogue between professionals of several disciplines (art, science, philosophy, law, communications, literature, social sciences) and the public on cultural and ethical implications of genetic engineering; 2) contestation of the alleged supremacy of DNA in life creation in favor of a more complex understanding of the intertwined relationship between genetics, organism, and environment; 3) extension of the concepts of biodiversity and evolution to incorporate precise work at the genomic level; 4) interspecies communication between humans and a transgenic mammal; 5) integration and presentation of "GFP Bunny" in a social and interactive context; 6) examination of the notions of normalcy, heterogeneity, purity, hybridity, and otherness; 7) consideration of a non-semiotic notion of communication as the sharing of genetic material across traditional species barriers; 8) public respect and appreciation for the emotional and cognitive life of transgenic animals; 9) expansion of the present practical and conceptual boundaries of artmaking to incorporate life invention.
Alba, the fluorescent bunny.
Photo: Chrystelle Fontaine
GLOW IN THE FAMILY
"Alba", the green fluorescent bunny, is an albino rabbit. This means that, since she has no skin pigment, under ordinary environmental conditions she is completely white with pink eyes. Alba is not green all the time. She only glows when illuminated with the correct light. When (and only when) illuminated with blue light (maximum excitation at 488 nm), she glows with a bright green light (maximum emission at 509 nm). She was created with EGFP, an enhanced version (i.e., a synthetic mutation) of the original wild-type green fluorescent gene found in the jellyfish Aequorea Victoria. EGFP gives about two orders of magnitude greater fluorescence in mammalian cells (including human cells) than the original jellyfish gene [2].
The first phase of the "GFP Bunny" project was completed in February 2000 with the birth of "Alba" in Jouy-en-Josas, France. This was accomplished with the invaluable assistance of zoosystemician Louis Bec [3] and scientists Louis-Marie Houdebine and Patrick Prunet [4]. Alba's name was chosen by consensus between my wife Ruth, my daughter Miriam, and myself. The second phase is the ongoing debate, which started with the first public announcement of Alba's birth, in the context of the Planet Work conference, in San Francisco, on May 14, 2000. The third phase will take place when the bunny comes home to Chicago, becoming part of my family and living with us from this point on.
Coin issued by the Roman emperor Hadrian, AD134-8; 20mm
Hadrian reigned from 117 to 138 AD. Collection Museum of London.
The human-rabbit association can be traced back to the biblical era, as exemplified by passages in the books Leviticus (Lev. 11:5) and Deuteronomy (De. 14:7), which make reference to saphan, the Hebrew word for rabbit. Phoenicians seafarers discovered rabbits on the Iberian Peninsula around 1100 BC and, thinking that these were Hyraxes (also called Rock Dassies), called the land "i-shepan-im" (land of the Hyraxes). Since the Iberian Peninsula is north of Africa, relative geographic position suggests that another Punic derivation comes from sphan, "north". As the Romans adapted "i-shepan-im" to Latin, the word Hispania was created -- one of the etymological origins of Spain. In his book III the Roman geographer Strabo (ca. 64 BC - AD 21) called Spain "the land of rabbits". Later on, the Roman emperor Servius Sulpicius Galba (5 BC - AD 69), whose reign was short-lived (68-69 AD), issued a coin on which Spain is represented with a rabbit at her feet. Although semi-domestication started in the Roman period, in this initial phase rabbits were kept in large walled pens and were allowed to breed freely.
Humans started to play a direct role in the evolution of the rabbit from the sixth to the tenth centuries AD, when monks in southern France domesticated and bred rabbits under more restricted conditions [5]. Originally from the region comprised by southwestern Europe and North Africa, the European rabbit (Oryctolagus cuniculus) is the ancestor of all domestic breeds. Since the sixth century, because of its sociable nature the rabbit increasingly has become integrated into human families as a domestic companion. Such human-induced selective breeding created the morphological diversity found in rabbits today. The first records describing a variety of fur colors and sizes distinct from wild breeds date from the sixteenth century. It was not until the eighteenth century that selective breeding resulted in the Angora rabbit, which has a uniquely thick and beautiful wool coat. The process of domestication carried out since the sixth century, coupled with ever increasing worldwide migration and trade, resulted in many new breeds and in the introduction of rabbits into new environments different from their place of origin. While there are well over 100 known breeds of rabbit around the world, "recognized" pedigree breeds vary from one country to another. For example, the American Rabbit Breeders Association (ARBA) "recognizes" 45 breeds in the U.S.A., with more under development.
In addition to selective breeding, naturally occurring genetic variations also contributed to morphological diversity. The albino rabbit, for example, is a natural (recessive) mutation which in the wild has minimal chances of survival (due to lack of proper pigmentation for camouflage and keener vision to spot prey). However, because it has been bred by humans, it can be found widely today in healthy populations. The human preservation of albino animals is also connected to ancient cultural traditions: almost every Native American tribe believed that albino animals had particular spiritual significance and had strict rules to protect them [6].
Ixchel and the Rabbit, North America, C.800 C.E. Ixchel is the moon goddess in Maya mythology, often depicted sitting in a moon sign holding a rabbit. | Rabbit on the moon found on pottery of the Mimbres tribe, who lived in what is now the Southwestern United States from the 9th to 12th centuries. |
"GFP Bunny" is a transgenic artwork and not a breeding project. The differences between the two include the principles that guide the work, the procedures employed, and the main objectives. Traditionally, animal breeding has been a multi-generational selection process that has sought to create pure breeds with standard form and structure, often to serve a specific performative function. As it moved from rural milieus to urban environments, breeding de-emphasized selection for behavioral attributes but continued to be driven by a notion of aesthetics anchored on visual traits and on morphological principles. Transgenic art, by contrast, offers a concept of aesthetics that emphasizes the social rather than the formal aspects of life and biodiversity, that challenges notions of genetic purity, that incorporates precise work at the genomic level, and that reveals the fluidity of the concept of species in an ever increasingly transgenic social context.
As a transgenic artist, I am not interested in the creation of genetic objects, but on the invention of transgenic social subjects. In other words, what is important is the completely integrated process of creating the bunny, bringing her to society at large, and providing her with a loving, caring, and nurturing environment in which she can grow safe and healthy. This integrated process is important because it places genetic engineering in a social context in which the relationship between the private and the public spheres are negotiated. In other words, biotechnology, the private realm of family life, and the social domain of public opinion are discussed in relation to one another. Transgenic art is not about the crafting of genetic objets d'art, either inert or imbued with vitality. Such an approach would suggest a conflation of the operational sphere of life sciences with a traditional aesthetics that privileges formal concerns, material stability, and hermeneutical isolation. Integrating the lessons of dialogical philosophy [7] and cognitive ethology [8], transgenic art must promote awareness of and respect for the spiritual (mental) life of the transgenic animal. The word "aesthetics" in the context of transgenic art must be understood to mean that creation, socialization, and domestic integration are a single process. The question is not to make the bunny meet specific requirements or whims, but to enjoy her company as an individual (all bunnies are different), appreciated for her own intrinsic virtues, in dialogical interaction.
Medieval rabbit. Detail from the tapestry "The Lady with the Unicorn", c. 1500. Cluny Museum, Paris. | Aztec rabbit. Shown on the back of the "Coronation Stone of Motecuhzoma II", Mexico, A.D. 1503. Art Institute, Chicago. |
One very important aspect of "GFP Bunny" is that Alba, like any other rabbit, is sociable and in need of interaction through communication signals, voice, and physical contact. As I see it, there is no reason to believe that the interactive art of the future will look and feel like anything we knew in the twentieth century. "GFP Bunny" shows an alternative path and makes clear that a profound concept of interaction is anchored on the notion of personal responsibility (as both care and possibility of response). "GFP Bunny" gives continuation to my focus on the creation, in art, of what Martin Buber called dialogical relationship [9], what Mikhail Bakhtin called dialogic sphere of existence [10], what Emile Benveniste called intersubjectivity [11], and what Humberto Maturana calls consensual domains [12]: shared spheres of perception, cognition, and agency in which two or more sentient beings (human or otherwise) can negotiate their experience dialogically. The work is also informed by Emmanuel Levinas' philosophy of alterity [13], which states that our proximity to the other demands a response, and that the interpersonal contact with others is the unique relation of ethical responsibility. I create my works to accept and incorporate the reactions and decisions made by the participants, be they eukaryotes or prokaryotes [14]. This is what I call the human-plant-bird-mammal-robot-insect-bacteria interface.
In order to be practicable, this aesthetic platform--which reconciles forms of social intervention with semantic openness and systemic complexity--must acknowledge that every situation, in art as in life, has its own specific parameters and limitations. So the question is not how to eliminate circumscription altogether (an impossibility), but how to keep it indeterminate enough so that what human and nonhuman participants think, perceive, and do when they experience the work matters in a significant way. My answer is to make a concerted effort to remain truly open to the participant's choices and behaviors, to give up a substantial portion of control over the experience of the work, to accept the experience as-it-happens as a transformative field of possibilities, to learn from it, to grow with it, to be transformed along the way. Alba is a participant in the "GFP Bunny" transgenic artwork; so is anyone who comes in contact with her, and anyone who gives any consideration to the project. A complex set of relationships between family life, social difference, scientific procedure, interspecies communication, public discussion, ethics, media interpretation, and art context is at work.
Throughout the twentieth century art progressively moved away from pictorial representation, object crafting, and visual contemplation. Artists searching for new directions that could more directly respond to social transformations gave emphasis to process, concept, action, interaction, new media, environments, and critical discourse. Transgenic art acknowledges these changes and at the same time offers a radical departure from them, placing the question of actual creation of life at the center of the debate. Undoubtedly, transgenic art also develops in a larger context of profound shifts in other fields. Throughout the twentieth century physics acknowledged uncertainty and relativity, anthropology shattered ethnocentricity, philosophy denounced truth, literary criticism broke away from hermeneutics, astronomy discovered new planets, biology found "extremophile" microbes living in conditions previously believed not capable of supporting life, molecular biology made cloning a reality.
Transgenic art acknowledges the human role in rabbit evolution as a natural element, as a chapter in the natural history of both humans and rabbits, for domestication is always a bidirectional experience. As humans domesticate rabbits, so do rabbits domesticate their humans. If teleonomy is the apparent purpose in the organization of living systems [15], then transgenic art suggests a non-utilitarian and more subtle approach to the debate. Moving beyond the metaphor of the artwork as a living organism into a complex embodiment of the trope, transgenic art opens a nonteleonomic domain for the life sciences. In other words, in the context of transgenic art humans exert influence in the organization of living systems, but this influence does not have a pragmatic purpose. Transgenic art does not attempt to moderate, undermine, or arbitrate the public discussion. It seeks to offer a new perspective that offers ambiguity and subtlety where we usually only find affirmative ("in favor") and negative ("against") polarity. "GFP Bunny" highlights the fact that transgenic animals are regular creatures that are as much part of social life as any other life form, and thus are deserving of as much love and care as any other animal [16].
In developing the "GFP Bunny" project I have paid close attention and given careful consideration to any potential harm that might be caused. I decided to proceed with the project because it became clear that it was safe [17]. There were no surprises throughout the process: the genetic sequence responsible for the production of the green fluorescent protein was integrated into the genome through zygote microinjection [18]. The pregnancy was carried to term successfully. "GFP Bunny" does not propose any new form of genetic experimentation, which is the same as saying: the technologies of microinjection and green fluorescent protein are established well-known tools in the field of molecular biology. Green fluorescent protein has already been successfully expressed in many host organisms, including mammals [19]. There are no mutagenic effects resulting from transgene integration into the host genome. Put another way: green fluorescent protein is harmless to the rabbit. It is also important to point out that the "GFP Bunny" project breaks no social rule: humans have determined the evolution of rabbits for at least 1400 years.
The Grey Rabbit, from John James Audubon's Viviparous Quadrupeds of North America,1845-1848. |
As we negotiate our relationship with our lagomorph companion [20], it is necessary to think rabbit agency without anthropomorphizing it. Relationships are not tangible, but they form a fertile field of investigation in art, pushing interactivity into a literal domain of intersubjectivity. Everything exists in relationship to everything else. Nothing exists in isolation. By focusing my work on the interconnection between biological, technological, and hybrid entities I draw attention to this simple but fundamental fact. To speak of interconnection or intersubjectivity is to acknowledge the social dimension of consciousness. Therefore, the concept of intersubjectivity must take into account the complexity of animal minds. In this context, and particularly in regard to "GFP Bunny", one must be open to understanding the rabbit mind, and more specifically to Alba's unique spirit as an individual. It is a common misconception that a rabbit is less intelligent than, for example, a dog, because, among other peculiarities, it seems difficult for a bunny to find food right in front of her face. The cause of this ordinary phenomenon becomes clear when we consider that the rabbit's visual system has eyes placed high and to the sides of the skull, allowing the rabbit to see nearly 360 degrees. As a result, the rabbit has a small blind spot of about l0 degrees directly in front of her nose and below her chin [21]. Although rabbits do not see images as sharply as we do, they are able to recognize individual humans through a combination of voice, body movements, and scent as cues, provided that humans interact with their rabbits regularly and don't change their overall configuration in dramatic ways (such as wearing a costume that alters the human form or using a strong perfume). Understanding how the rabbit sees the world is certainly not enough to appreciate its consciousness but it allows us to gain insights about its behavior, which leads us to adapt our own to make life more comfortable and pleasant for everyone.
Alba is a healthy and gentle mammal. Contrary to popular notions of the alleged monstrosity of genetically engineered organisms, her body shape and coloration are exactly of the same kind we ordinarily find in albino rabbits. Unaware that Alba is a glowing bunny, it is impossible for anyone to notice anything unusual about her. Therefore Alba undermines any ascription of alterity predicated on morphology and behavioral traits. It is precisely this productive ambiguity that sets her apart: being at once same and different. As is the case in most cultures, our relationship with animals is profoundly revealing of ourselves. Our daily coexistence and interaction with members of other species remind us of our uniqueness as humans. At the same time, it allow us to tap into dimensions of the human spirit that are often suppressed in daily life--such as communication without language--that reveal how close we really are to nonhumans. The more animals become part of our domestic life, the further we move breeding away from functionality and animal labor. Our relationship with other animals shifts as historical conditions are transformed by political pressures, scientific discoveries, technological development, economic opportunities, artistic invention, and philosophical insights. At the beginning of the twenty-first century, as we transform our understanding of human physical boundaries by introducing new genes into developed human organisms, our communion with animals in our environment also changes. Molecular biology has demonstrated that the human genome is not particularly important, special, or different. The human genome is made of the same basic elements as other known life forms and can be seen as part of a larger genomic spectrum rich in variation and diversity.
Western philosophers, from Aristotle [22] to Descartes [23], from Locke [24] to Leibniz [25], from Kant [26] to Nietsche [27] and Buber [28], have approached the enigma of animality in a multitude of ways, evolving in time and elucidating along the way their views of humanity. While Descartes and Kant possessed a more condescending view of the spiritual life of animals (which can also be said of Aristotle), Locke, Leibniz, Nietsche, and Buber are -- in different degrees -- more tolerant towards our eukaryotic others [29]. Today, our ability to generate life through the direct method of genetic engineering prompts a re-evaluation of the cultural objectification and the personal subjectification of animals, and in so doing it renews our investigation of the limits and potentialities of what we call humanity. I do not believe that genetic engineering eliminates the mystery of what life is; to the contrary, it reawakens in us a sense of wonder towards the living. We will only think that biotechnology eliminates the mystery of life if we privilege it in detriment to other views of life (as opposed to seeing biotechnology as one among other contributions to the larger debate) and if we accept the reductionist view (not shared by many biologists) that life is purely and simply a matter of genetics. Transgenic art is a firm rejection of this view and a reminder that communication and interaction between sentient and nonsentient actants lies at the core of what we call life. Rather than accepting the move from the complexity of life processes to genetics, transgenic art gives emphasis to the social existence of organisms, and thus highlights the evolutionary continuum of physiological and behavioral characteristics between the species. The mystery and beauty of life is as great as ever when we realize our close biological kinship with other species and when we understand that from a limited set of genetic bases life has evolved on Earth with organisms as diverse as bacteria, plants, insects, fish, reptiles, birds, and mammals.
TRANSGENESIS, ART, AND SOCIETY
The success of human genetic therapy suggests the benefits of altering the human genome to heal or to improve the living conditions of fellow humans [30]. In this sense, the introduction of foreign genetic material in the human genome can be seen not only as welcome but as desirable. Developments in molecular biology, such as the above example, are at times used to raise the specter of eugenics and biological warfare, and with it the fear of banalization and abuse of genetic engineering. This fear is legitimate, historically grounded, and must be addressed. Contributing to the problem, companies often employ empty rhetorical strategies to persuade the public, thus failing to engage in a serious debate that acknowledges both the problems and benefits of the technology. [31] There are indeed serious threats, such as the possible loss of privacy regarding one's own genetic information, and unacceptable practices already underway, such as biopiracy (the appropriation and patenting of genetic material from its owners without explicit permission).
As we consider these problems, we can not ignore the fact that a complete ban on all forms of genetic research would prevent the development of much needed cures for the many devastating diseases that now ravage human and nonhumankind. The problem is even more complex. Should such therapies be developed successfully, what sectors of society will have access to them? Clearly, the question of genetics is not purely and simply a scientific matter, but one that is directly connected to political and economic directives. Precisely for this reason, the fear raised by both real and potential abuse of this technology must be channeled productively by society. Rather than embracing a blind rejection of the technology, which is undoubtedly already a part of the new bioscape, citizens of open societies must make an effort to study the multiple views on the subject, learn about the historical background surrounding the issues, understand the vocabulary and the main research efforts underway, develop alternative views based on their own ideas, debate the issue, and arrive at their own conclusions in an effort to generate mutual understanding. Inasmuch as this seems a daunting task, drastic consequences may result from hype, sheer opposition, or indifference.
This is where art can also be of great social value. Since the domain of art is symbolic even when intervening directly in a given context [32], art can contribute to reveal the cultural implications of the revolution underway and offer different ways of thinking about and with biotechnology. Transgenic art is a mode of genetic inscription that is at once inside and outside of the operational realm of molecular biology, negotiating the terrain between science and culture. Transgenic art can help science to recognize the role of relational and communicational issues in the development of organisms. It can help culture by unmasking the popular belief that DNA is the "master molecule" through an emphasis on the whole organism and the environment (the context). At last, transgenic art can contribute to the field of aesthetics by opening up the new symbolic and pragmatic dimension of art as the literal creation of and responsibility for life.
NOTES
1 - Kac, Eduardo. "Transgenic Art", Leonardo Electronic Almanac, Vol. 6, N. 11, December 1998. Republished in: Gerfried Stocker and Christine Schopf (eds.), Ars Electronica '99 - Life Science (Vienna, New York: Springer, 1999), pp. 289- 296. See also: Kac, Eduardo. "Genesis", in Spike/Genesis, exhibition catalogue, O. K. Center for Contemporary Art, Linz, Austria, pp. 50-55.
2 - After green fluorescent protein (GFP) was first isolated from Aequorea victoria and used as a new reporter system (see: Chalfie, M., Tu, Y., Euskirchen, G., Ward, W., Prasher, D. (1994). Green Fluorescent Protein as a Marker for Gene Expression. Science 263, 802-805) it was modified in the laboratory to increase fluorescence. See: Heim, R., Cubitt, A. B. and Tsien, R.Y. (1995) Improved green fluorescence. Nature 373:663-664; and Heim, R., Tsien, R. Y. (1996). Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Current Biology 6, 178-182. Further work altered the green fluorescent protein gene to conform to the favored codons of highly expressed human proteins and thus allowed improved expression in mammalian cells. See: Haas, J, Park, EC and Seed, B. (1996). Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Current Biology 6: 315-24. More recently, new mutations with greater fluorescence have been developed. See: Yang, Te-Tuan et al. (1998). Improved fluorescence and dual color detection with enhanced blue and green variants of the green fluorescent protein. The Journal of biological chemistry, V. 273, N. 14, p. 8212. For a comprehensive overview of green fluorescent protein as a genetic marker, see: Chalfie, Martin. Kain, Steven. Green fluorescent protein : properties, applications, and protocols (New York : Wiley-Liss, 1998). Since its first introduction in molecular biology, GFP has been expressed in many organisms, including bacteria, yeast, slime mold, many plants, fruit flies, zebrafish, many mammalian cells, and even viruses. Moreover, many organelles, including the nucleus, mitochondria, plasma membrane, and cytoskeleton, have been marked with GFP.
3 - Artist, curator, and cultural promoter Louis Bec coined the term zoosystémicien (zoosystemician) to define his artistic practice and his sphere of interest, i.e., the digital modeling of living systems. Formerly Inspecteur à la création artistique chargé des Nouvelles Technologies, Ministère de la Culture (Coordinator of Art and Technology for the French Ministry of Culture), Louis Bec was the Director of the festival Avignon Numerique (Digital Avignon), celebrated in Avignon, France, from April 1999 to November 2000, on the occasion of Avignon's status as European cultural capital of the year 2000.
4 - Louis-Marie Houdebine and Patrick Prunet are scientists who work at the Institut National de la Recherche Agronomique-INRA (National Institute of Agronomic Research), France. Louis-Marie Houdebine is the Director of Research of the Biology of Development and Biotechnology Unit, INRA, Jouy-en-Josas Center, France. Among his books in French we find: Le génie génétique, de l'animal à l'homme : un exposé pour comprendre, un essai pour réfléchir (Paris : Flammarion, 1996); Les biotechnologies animales : une nécessité ou une révolution inutile (Paris : Cachan : France agricole, 1998); and Les animaux transgéniques (Paris : Cachan : Tec et Doc, 1998). In English: Transgenic Animals - Generation and Use (Amsterdam: Harwood Academic Publishers, 1997). Patrick Prunet is a researcher in the Group in Physiology of Stress and Adaptation, INRA, Campus de Beaulieu, Rennes, France.
5 - For an account of the history of domestication, see: Zeuner, Frederick Everard. A History of Domesticated Animals (New York : Harper & Row, 1963); Clutton-Brock, Juliet. Domesticated Animals from Early Times (London: British Museum, 1981); Caras, Roger A. A Perfect Harmony: The Intertwining Lives of Animals and Humans Throughout History (New York: Simon and Schuster, 1996); Gautier, Achilles. La domestication. Et l'homme créa ses animaux.(Paris: Editions Errance, 1990); Helmer, Daniel. La domestication des animaux par les hommes préhistoriques (Paris: Masson, 1992).; and Sawer, Carl O. Agricultural Origins and Dispersals: The Domestication of Animals and Foodstuffs (Cambridge, MA: MIT Press, 1970). For specific references on the domestication of rabbits see: Biadi, F. and Le Gall, A., Le lapin de garenne (Paris: Hatier, 1993); Bianciotto, G., Bestiaires du Moyen Âge (Paris: Stock, 1980); Brochier, J. J., Anthologie du lapin (Paris: Hatier, 1987); Le lapin, aspects historiques, culturels et sociaux.Ñ Ethnozootechnie, n° 27, 1980.
6 - Detailed information about the spiritual values of individual tribes can be found in: Gill, Sam D., Dictionary of Native American mythology (New York : Oxford University Press, 1994). See also: Hirschfelder, Arlene B., Encyclopedia of Native American religions : an introduction (New York : Facts on File, 2000). Richard Erdoes and Alfonso Ortiz (Editors). American Indian Myths and Legends (New York: Pantheon Books, 1985). A recent case that well illustrates the sacred qualities of albino animals for Native American tribes was the birth of "Miracle", the white buffalo calf. "Miracle" was born on the Heider farm, in Janesville, Wisconsin, on August 20, 1994. The announcement of Miracle's birth prompted the American Bison Association to say that the last documented white buffalo died in 1959. Miracle is held sacred by buffalo-hunting Plains Indians, including the Lakota, the Oneida, the Cherokee, and the Cheyenne. Soon after her birth, Joseph Chasing Horse, traditional leader of the Lakota nation, visited the site of Miracle's birth and conducted a Pipe ceremony there, while telling the story of White Buffalo Calf Woman, a legendary figure who brought the first Pipe to the Lakota people. Following suit, more than 20,000 people come to see Miracle, and the gate to the Heider's pasture and the trees next to it soon became covered with offerings: feathers, necklaces and pieces of colorful cloth. News of the calf spread quickly through the Native American community because its birth fulfilled a 2,000-year-old prophecy of northern Plains Indians. Joseph Chasing Horse explained in a newspaper interview that 2,000 years ago a young woman who first appeared in the shape of a white buffalo gave the Lakota's ancestors a sacred pipe and sacred ceremonies and made them guardians of the Black Hills. Before leaving, she also prophesied that one day she would return to purify the world, bringing back spiritual balance and harmony; the birth of a white buffalo calf would be a sign that her return was at hand. Owen Mike, head of the Ho-Chunk (Winnebago) buffalo clan, said in the same article that his people have a slightly different interpretation of the white calf's significance. He added, however, that the Ho-Chunk version of the prophecy also stresses the return of harmony, both in nature and among all peoples. "It's more of a blessing from the Great Spirit," Mike explained. "It's a sign. This white buffalo is showing us that everything is going to be okay." See: "Miracle", Tom Laskin, Isthmus Newspaper, Madison, Wisconsin; Nov. 25-Dec 1, 1994.
7 - In the twentieth century, dialogical philosophy found renewed impetus with Martin Buber, who published in 1923 the book I-Thou, in which he stated that humankind is capable of two kinds of relationship: I and Thou (reciprocity) and I-It (objectification). In I and Thou relations one fully engages in the encounter with the other and carries on a real dialogue. In I-It relations "It" becomes an object of control. The "I" in both cases is not the same, for in the first case there is a non-hierarchical meeting while in the second case there is detachment. See: Buber, Martin. I and Thou (New York: Collier, 1987). Martin Buber's dialogical philosophy of relation, which is very close to Phenomenology and Existentialism, also influenced Mikhail Bakhtin's philosophy of language. Bakhtin stated in countless writings that ordinary instances of monological experience--in culture, politics, and society--suppress the dialogical reality of existence.
8 - Cognitive ethology can be defined as "the evolutionary and comparative study of nonhuman animal thought processes, consciousness, beliefs, or rationality, and is an area in which research is informed by different types of investigations and explanations." See: Bekoff, Marc (1995). "Cognitive Ethology and the Explanation of Nonhuman Animal Behavior", in Comparative Approaches to Cognitive Science. J. A. Meyer and H. L. Roitblat, eds. (Cambridge, Mass. : MIT Press, 1995), 119-150. A pioneer of ethology, the Estonian zoologist Jakob von Uexküll (1864-1944) devoted himself to the problem of how living beings subjectively perceive their environment and how this perception determines their behavior. In 1909 he wrote "Umwelt und Innenwelt der Tiere", introducing the German word 'umwelt" (roughly translated, "environment") to refer to the subjective world of an organism. The book has been excerpted in Foundations of Comparative Ethology, ed. G. Burghardt (New York: Van Nostrand Reinhold, 1985). Since Uexküll emphasized the fact that signs and meanings are of the utmost importance in all aspects of biological processes (at the level of the cell or the organism), he also anticipated the concerns of cognitive ethology and biosemiotics (the study of signs, of communication, and of information in living organisms). See: Uexkull, Jacob von. Mondes animaux et monde humain : suivi de théorie de la signification (Paris : Denoël, 1984). Further contributing to the subjective world of other animals, Donald Griffin first demonstrated that bats navigate the world using biosonar, a process he called "echolocation". See: Griffin, Donald R. Listening in the dark : the acoustic orientation of bats and men (Ithaca ; London : Comstock Publishing, 1986). First published in 1958. Griffin has since contributed to cognitive ethology with many books, most notably: The Question of Animal Awareness: Evolutionary Continuity of Mental Experience. (New York : The Rockefeller University Press, 1976), Animal Thinking (Cambridge, MA: Harvard University Press, 1984) and Animal Minds (Chicago: University of Chicago Press, 1992). Another important pioneering contribution was: Nagel, T. 1974. What is it like to be a bat? Philosophical Review 83: 435-405. In this paper Nagel offered a critique of physicalist explanations of the mind, pointing out that they do not take into account consciousness, i.e. what is the actual life experience of an organism. In this paper, a classic both of cognitive ethology and consciousness studies, Nagel reminds us that what science professes to be objective accounts inevitably omit points of view. In recognition of Griffin's pioneering work, which exhibited the problems of behaviorist and cognitive thinking that fails to acknowledge conscious awareness in mammals and thinking in small animals, several researchers pushed forward the research agenda of cognitive ethology. See: Ristau, Carolyn A. (ed.) Cognitive ethology : the minds of other animals : essays in honor of Donald R. Griffin (Hillsdale, N.J. : L. Erlbaum Associates, 1991). A comprehensive discussion of the multiple views that inform the debate around cognitive ethology, including the critique of those who oppose the very foundational principles of this science, can be found in: Bekoff, M., and Allen, C. "Cognitive ethology: Slayers, skeptics, and proponents", in R. W. Mitchell, N. Thompson, and L. Miles, eds. Anthropomorphism, Anecdote, and Animals: The Emperor's New Clothes? (Lincoln, Nebraska: University of Nebraska Press, 1993). In his book Kinds of Minds, Daniel Clement Dennett makes a general attempt to explain consciousness irrespective of species. He takes the "intentional stance", i.e., the strategy of interpreting the behavior of something (a living or non living thing) as if it were a rational agent whose actions are determined by its beliefs and desires. He examines the "intentionality" of a molecule that replicates itself, that of a dog that mark territory, and that of a human that wishes to do something in particular. In the end, for Dennett it is our ability to use language that forms the particular mind humans have. Dennett believes that language is a way to unravel the representations in our mind and extract units of them. Without language, an animal may have exactly the same representation, but it doesn't have access to any unit of it. See: Dennett, D. C. Kinds of Minds: Toward an Understanding of Consciousness. (New York: Basic Books, 1996). For an examination of the rapport between philosophical theories of mind and empirical studies of animal cognition, see: Allen, C., & M. Bekoff. Species of Mind, The philosophy and biology of cognitive ethology (Cambridge, MA: MIT Press, 1997). Focused studies on the intelligence of non-primate species have also contributed to demonstrate the unique mental abilities of creatures such as marine mammals, birds, and ants. See: Schusterman, R. J., Thomas, J. A., and Wood, F. G. eds. Dolphin Cognition and Behavior: A comparative Approach (Hillsdale, New Jersey: Erlbaum, 1986); Skutch, A. F. The Minds of Birds (College Station, TX: Texas A. & M. University Press, 1996); Pepperberg, Irene Maxine. The Alex studies : cognitive and communicative abilities of grey parrots (Cambridge, Mass. ; London : Harvard University Press, 2000). For the question of communication in ants see Gordon, D. M. 1992. Wittgenstein and ant-watching. Biology and Philosophy 7: 13-25. On page 23, Deborah Gordon points out that "the way that scientists see animals' behavior occurs... [in] a system embedded in the social practices of a certain time and place." Gordon's field studies of interactions between neighboring colonies have shown that ants learn to recognize not only their own nest-mates but also ants from neighboring, unrelated colonies. Her field studies have led to further research concerning communication networks within ant colonies. For a more exhaustive examination of the problem, see: Gordon, D. M. . Ants at Work: how an insect society is organized. New York: Free Press, 1999). The key contribution of Gordon's book is to undue the popular perception that ant colonies run according to rigid rules and to show (based on her fieldwork with harvester ants in Arizona) that an ant society can be sophisticated and change its collective behavior as circumstances require. Finding inspiration in Charles Darwin's book The Expression of Emotions in Man and Animals (New York: D. Appleton and Company, 1872), Jeffrey M. Masson and Susan McCarthy make a convincing case for animal emotion. See: Masson, J. M. and S McCarthy. When Elephants Weep: The Emotional Lives of Animals (New York: Bantam Doubleday Dell, 1995). On the minds of nonhuman primates, see: Cheney, D. L., and Seyfarth, R. M. How Monkeys See the World: Inside the Mind of Another Species. (Chicago: University of Chicago Press, 1990); Montgomery, S. 1991. Walking With the Great Apes: Jane Goodall, Dian Fossey, and Birutè Galdikas. New York: SUNY Press; Savage-Rumbaugh, , S. and R. Lewin 1994. Kanzi, The ape at the brink of the human mind. New York: Wiley; Russon, A. E., K. A. Bard & s. T. Parker eds. 1996. Reaching into Thought, the Minds of the Great Apes. Cambridge U. Press; Waal, F. M. de 1997 Bonobos: The Forgotten Ape. Berkeley, CA: University of California Press.
9 - Buber, Martin. I and Thou (New York: Collier, 1987), p. 124. According to Michael Theunissen, "Buber sought to outline an "ontology of the between" in which individual consciousness can only be understood within the context of our relationships with others, not independent of them." See: Theunissen, Michael. The Other: Studies in the Social Ontology of Husserl, Heidegger, Sarte, and Buber. Trans. Christopher Macann. (Cambridge, MA: MIT Press, 1984), pp. 271-272.
10 - Bakhtin, M. Problems of Dostoevsky's Poetics. Trans. Caryl Emerson. (Minneapolis: U of Minnesota P, 1984), p. 270. For Bakhtin, dialogic relationships "are an almost universal phenomenon, permeating all human speech and all relationships and manifestations of human life -- in general, everything that has meaning and significance." Op.cit., p. 40.
11 - On the formation of "ego" or subjectivity through language, and the notion that it is only through language that we are conscious (i.e., are "subject" at all), see: Emile Benveniste, "Subjectivity in Language," chap. 21 in Problems in General Linguistics, trans. Mary Elizabeth Meek (1966; Coral Gables, Florida: Univ. of Miami Press, 1971), pp. 223-230. Echoing Buber, Benveniste's position is that when a person says "I" (i.e., when an individual occupies a subject position in discourse), he or she takes one's place as a member of the intersubjective community of persons. Thus, in being a subject/person, he or she is not simply an object/thing.
Benveniste was certainly not the only to consider the intersubjective nature of human experience. Wlad Godzich wrote: "For Kant, the fact that the individual could not experience the object as it was in itself required the postulation of another dimension among individuals: intersubjectivity". See: Arac, Jonathan and Godzich, Wlad (eds.) The Yale Critics: Deconstruction in America (Minneapolis: University of Minnesota Press, 1983), p. 46. When Edmund Husserl considered in retrospect his lectures of 1910/11, he wrote: "My lectures at Göttingen in 1910-11 already presented a first sketch of my transcendental theory of empathy, i.e. the reduction of human existence as mundane being-with-one-another to transcendental intersubjectivity." See: Husserl, E. Ideas Pertaining to a Pure Phenomenology and a Phenomenological Philosophy, Second Book, Phenomenological Investigations Concerning Constitution (Dordrecht: Kluwer, 1989), pg. 417. For Maurice Marleau-Ponty our not-sameness to each other is not a flaw, but is the very condition of communication: "the body of the other -- as bearer of symbolic behaviors and of the behavior of true reality -- tears itself away from being one of my phenomena, offers me the task of a true communication, and confers on my objects the new dimension of intersubjective being." For Marleau-Ponty it is in the ambiguity of intersubjectivity that our perception "wakes up." See: Merleau-Ponty, M. Primacy of Perception (Chicago: Northwestern University Press, 1964), 17-18. For a critical analysis of Merleau-Ponty's position on intersubjectivity, see: Friedman, Robert M "Merleau-Ponty's Theory of Intersubjectivity", Philosophy Today 19: 228-42 (Fall 1975). Jurgen Habermas also gave the concept of intersubjectivity a central place in his work. Giving continuation to one of the projects of the Frankfurt School (the critique of the notion that valid human knowledge is restricted to empirically testable propositions arrived at by means of systematic inquiry professed to be objective and devoid of particular interests), Habermas finds in intersubjectivity a means of opposing theories which base truth and meaning on individual consciousness. For him, intersubjectivity is a communication situation in which "the speaker and hearer, through illocutionary acts, bring about the interpersonal relationships that will allow them to achieve mutual understanding". See: Habermas, J. (1976). Some distinctions in universal pragmatics. Theory and Society, 3, (2), p. 157. Habermas further explained his view of intersubjective communication: "When a hearer accepts a speech act, an agreement comes about between at least two acting and speaking subjects. However this does not rest only on the intersubjective recognition of a single, thematically stressed validity claim. Rather, an agreement of this sort is achieved simultaneously at three levels.... It belongs to the communicative intent of the speaker (a) that he perform a speech act that is right in respect to the given normative context, so that between him and the hearer an intersubjective relation will come about which is recognized as legitimate; (b) that he make a true statement (or correct existential presuppositions), so that the hearer will accept and share the knowledge of the speaker; and (c) that he express truthfully his beliefs, intentions, feelings, desires, and the like, so that the hearer will give credence to what is said." See: Jürgen Habermas, The Theory of Communicative Action, Vol. 1 Reason and the Rationalization of Society (Boston: Beacon Press, 1984), pp. 307-308.
12 - From the perspective of his unique and systematic branch of theoretical biology, Maturana explains the notion of consensual domain with great clarity: "When two or more organisms interact recursively as structurally plastic systems, each becoming a medium for the realization of the autopoiesis of the other, the result is mutual ontogenic structural coupling. From the point of view of the observer, it is apparent that the operational effectiveness that the various modes of conduct of the structurally coupled organisms have for the realization of their autopoiesis under their reciprocal interactions is established during the history of their interactions and through their interactions. Furthermore, for an observer, the domain of interactions specified through such ontogenic structural coupling appears as a network of sequences of mutually triggering interlocked conducts that is indistinguishable from what he or she would call a consensual domain. In fact, the various conducts or behaviors involved are both arbitrary and contextual. The behaviors are arbitrary because they can have any form as long as they operate as triggering perturbations in the interactions; they are contextual because their participation in the interlocked interactions of the domain is defined only with respect to the interactions that constitute the domain. Accordingly, I shall call the domain of interlocked conducts that results from ontogenic reciprocal structural coupling between structurally plastic organisms a consensual domain." See: Maturana, Humberto R. "Biology of Language: The Epistemology of Reality", in G. Miller & E. Lenneberg (Eds.) Psychology and Biology of Language and Thought (New York: Academic Press, 1978), p. 47. For an earlier discussion of "consensual domains", see: Maturana, H. R. The organization of the living: a theory of the living organization. The International journal of Man-Machine Studies, 1975, 7, 313-332.
Still in "Biology of Language: The Epistemology of Reality", Maturana explains the term autopoiesis: "There is a class of dynamic systems that are realized, as unities, as networks of productions (and disintegrations) of components that: (a) recursively participate through their interactions in the realization of the network of productions (and disintegrations) of components that produce them; and (b) by realizing its boundaries, constitute this network of productions (and disintegrations) of components as a unity in the space they specify and in which they exist. Francisco Varela and I called such systems autopoietic systems, and autopoietic organization their organization. An autopoietic system that exists in physical space is a living system (or, more correctly, the physical space is the space that the components of living systems specify and in which they exist)". Op. cit., p. 36. See also: Maturana, H.R. & Varela, F.G. Autopoiesis and Cognition: The Realization of the Living. (Dordrecht, Holland: Boston: London : Reidel, 1980). This book was originally published in Chile as: De Maquinas y Seres Vivos, Editorial Universitaria, 1972.
13 - Emmanuel Levinas wrote: "Proximity, difference which is non-indifference, is responsibility." See Levinas, E. Otherwise than Being or Beyond Essence, translated by Alphonso Lingis (Boston: Martinus Nijhoff Publishers, 1981), p. 139. Partially influenced by the dialogical philosophy of Martin Buber, Levinas sought to go beyond the ethically neutral tradition of ontology through an analysis of the 'face-to-face' relation with the Other. For Levinas, the Other can not be known as such. Instead, the Other arises in relation to others, in a relationship of ethical responsibility. For Levinas, this ethical responsibility must be regarded as prior to ontology. For his insights on Buber's work, see: Levinas, E. "Martin Buber and the Theory of Knowledge", in Schilpp, P. (ed.) The philosophy of Martin Buber (La Salle, IL: Open Court , 1967), pp. 133-150.
14 - There are three types of cell: Prokaryotes, Eukaryotes, and Archae. Prokaryotes are unicellular organisms (e.g., bacteria) that lack a nuclear membrane and membrane-bound organelles. Eukaryotes are unicellular (e.g., yeast) or multicellular organisms (e.g., humans) that have a nuclear membrane surrounding genetic material and numerous membrane-bound organelles dispersed in a complex cellular structure. All cells in multicellular organisms are eukaryotic. Eukaryotes include most organisms (algae, fungi, protozoa, plants, and animals) except viruses, bacteria, and blue-green algae. Another major domain of life is called Archaea, microorganisms with genetic features distinct from prokarya and eukarya. The DNA of Archea is not contained within a nucleus. Many Archae live in harsh environments, such as thermal vents in the Ocean and hot springs. Most methane-producing bacteria are actually Archae.
15 - Teleo-nomic means regulatory principle (nomic) guided by an objective or intention (teleo), without implying any vitalistic connotations. For the concept of teleonomy, see: Ayala, F., "Teleological Explanations in Evolutionary Biology" in Philosophy of Science, (1970), v. 37, pp. 1-15; Lorenz, Konrad. Foundations of Ethology (New York: Springer, 1981), pp. 23-35; Lorenz, K. Behind the Mirror (New York: London: Harcourt Brace Jovanovich, 1977), pp. 21-25. Maturana and Varela advocate the "elimination of teleonomy as a defining feature of living systems", because they believe this concept does not accomplish much more than revealing "the consistency of living systems within the domain of observation". See : Maturana, H.R. & Varela, F.G. Autopoiesis and Cognition: The Realization of the Living. (Dordrecht, Holland: Boston: London : Reidel, 1980), pp. 85-87.
16 - On the question of the welfare of transgenic animals, see: L.F.M. van Zutphen, M. van der Meer, (Eds.) Welfare Aspects of Transgenic Animals (New York: Springer, 1997).
17 - By this I mean that the process was expected to be (and in fact was) as common as any other rabbit pregnancy and birth. This is due to the fact that transgenic technology has been successfully and regularly employed in the creation of mice since 1980 and in rabbits since 1985. See: Gordon, J.W., Scargos, G.A., Plotkin, D.J., Barbosa, J.A. and Ruddle, F.R. (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. U.S.A. 77, 7380-7384; Gordon, J.W. and Ruddle, F.H. (1981). Integration and stable germ line transformation of genes injected into mouse pronuclei. Science 214:1244-1246; Hammer, R. E., Pursel, V. G., Rexroad, C. E., Jr., Wall, R. J., Bolt, D. J., Ebert, K. M., Palmiter, R. D., and Brinster, R. L. Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315, 680-683 (1985). The term transgenic was first used by J.W. Gordon and F.H. Ruddle in their 1981 paper. For additional information on expression of GFP in rabbits, see: Kang, T Y ; Yin, X J ; Rho, G J ; Lee, H ; Lee, H J . Cloning of transgenic rabbit embryos expressing green fluorescent protein (GFP) gene by nuclear transplantation. Theriogenology. 53, no. 1, (2000): 222.
18 - The zygote is the cell formed by the union of two gametes. A gamete is a reproductive cell, especially a mature sperm or egg capable of fusing with a gamete of the opposite sex to produce the fertilized egg. Direct microinjection of DNA into the male pronucleus of a rabbit zygote has been the method most extensively used in the production of transgenic rabbits. As the foreign DNA integrates into the rabbit chromosomal DNA at the one-cell stage, the transgenic animal has the new DNA in every cell. For detailed discussion of the methods and applications of microinjection technology, see: Lacal, J.C., Perona, R. , and Feramisco, J. Microinjection (New York: Springer, 1999). The first successful creation of transgenic mice using pronuclear microinjection was reported in 1980: Gordon, J.W. et al., 1980. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. USA 77: 7380-7384. The new gene was proven to have been integrated into the mouse genome, but it did not express. The first visible phenotypic change in transgenic mice was described in 1982 for animals expressing the rat growth hormone sequence: Palmiter, R.D. et al., 1982. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300: 611-615. Following transgenic mice creation, rabbits, sheep and pigs were also created (see note 17). Currently, several hundred transgenic expression papers are published each year.
19 - See note 2.
20 - A lagomorph is one of the various gnawing mammals in the order Lagomorpha, including rabbits, hares, and pikas.
21 - Krempels, Dana M., "What Do Rabbits See?" House Rabbit Society: Orange County Chapter Newsletter 5 (Summer 1996), 1. For a more comprehensive examination of vision in rabbits and other animals, see: Smythe, R.H., Vision in the Animal World, St. Martin's Press, New York (1975).
22 - In Part I of Book IX of his "The History of Animals", written ca. 350 BC, Aristotle recognized the complexity of animal emotional states: "Of the animals that are comparatively obscure and short-lived the characters or dispositions are not so obvious to recognition as are those of animals that are longer-lived. These latter animals appear to have a natural capacity corresponding to each of the passions: to cunning or simplicity, courage or timidity, to good temper or to bad, and to other similar dispositions of mind." See: Aristotle. History of Animals. Books VII-X. (Cambridge, MA: London : Harvard University Press, 1991). Although in the first chapter of the Metaphysics Aristotle attributes forms of reason and intelligence to animals, in another book (Politics) he claims that humans are the only animal capable of logos (Book VII, Part XIII): "Animals lead for the most part a life of nature, although in lesser particulars some are influenced by habit as well. Man has rational principle, in addition, and man only." Also in the Politics, he compares animals to slaves (Book I, Part V): "the use made of slaves and of tame animals is not very different; for both with their bodies minister to the needs of life. " See: Aristotle. The works of Aristotle (London, Oxford Univ., 1966).
23 - In his 1637 Discourse on the Method, Descartes insists on an absolute separation between human and animal. For him, consciousness and language create the boundary of being between humankind and animals. Descartes stated that "beasts have less reason than men," and that in fact "they have no reason at all". See: Descartes, Rene. 1637. "Discourse on the Method," in Descartes: Selected Philosophical Writings. Trans. John Cottingham, Robert Stoothoff and Dugald Murdoch. (Cambridge: Cambridge University Press, 1988), p. 45. For Descartes, since animals do not have a recognizable language they lack reason, and as a result are in his view like automata, capable of mimicking speech but not truly able to engage in discourse that enables and supports consciousness. The byproduct of this view is the ascription of animality to the domain of the unconscious. This maneuver did not escape the attention of semiotician Charles Sander Peirce, who criticized Descartes: "Descartes was of the opinion that animals were unconscious automata. He might as well have thought that all men but himself were unconscious" See: Peirce, Charles Sanders. 1901. "Minute Logic," in Peirce on Signs: Writings on Semiotic by Charles Sanders Peirce. Ed. James Hoopes. (Chapel Hill: University of North Carolina Press, 1991), p. 234.
24 - In An Essay Concerning Human Understanding (Book II, Chapter XI), John Locke wrote: "If it may be doubted whether beasts compound and enlarge their ideas that way to any degree; this, I think, I may be positive in that the power of abstracting is not at all in them; and that the having of general ideas is that which puts a perfect distinction betwixt man and brutes, and is an excellency which the faculties of brutes do by no means attain to. For it is evident we observe no footsteps in them of making use of general signs for universal ideas; from which we have reason to imagine that they have not the faculty of abstracting, or making general ideas, since they have no use of words, or any other general signs." Even though Locke denied animals the faculty of abstract thought, he still did not agree with Descartes in considering animals automata. Still in the same chapter, Locke wrote: " if they [animals] have any ideas at all, and are not bare machines, (as some would have them,) we cannot deny them to have some reason." See: Locke, John. An Essay Concerning Human Understanding (New York: Dover, 1959), p. 208. In his partial rejection of the Cartesian theory of knowledge John Locke proposed two sources of ideas: sensation and reflection. By means of the difference between ideas of sensation and ideas of reflection, Locke distinguished man from animals: animals had certain sensory ideas and a degree of reason but no general ideas (i.e., abstraction ability) and as a result no language for their manifestation. For Locke, abstraction is firmly beyond the capacity of any animal, and its is precisely abstract thought that plays a fundamental role in forming the ideas of mixed modes, on which morality depends.
25 - For Gottfried Leibniz, animals did not have self-consciousness and the power to recognize eternal truths, which for him were characteristics of the souls of men. He wrote: "I am also inclined to believe that there are souls in the lower animals because it pertains to the perfection of things that when all those things are present which are adapted to a soul, the souls also should be understood to be present." [...] But no one should think that it can with equal justice be inferred that there must also be minds in the lower animals; for it must be known that the order of things will not allow all souls to be free from the vicissitudes of matter, nor will justice permit some minds to be abandoned to agitation. So it was sufficient that souls should be given to the lower animals, especially as their bodies are not made for reasoning, but destined to various functions -- the silkworm to weave, the bee to make honey, and the others to the other functions by which the universe is distinguished." See: Leibniz, G., "A Specimen of Discoveries About Marvellous Secrets" (c. 1686), in Philosophical Writings (London : Melbourne: Dent, 1984), p. 84.
26 - In The Metaphysics of Morals (Metaphysical First Principles of the Doctrine of Virtue) Kant states that we as human beings are distinguished from other animals by our capacity to set ends for ourselves, which is only possible for a rational being. See: The Metaphysics of Morals (Cambridge: Cambridge University Press, 1991), pp. 381, 384-85, 392. For Kant the moral faculty of humans was directly connected to the fundamental property of reason. He did not find in nature the origin of morality, and thus denied animals membership in the (moral) kingdom of ends. For Kant, the sense of moral duty is inherent in humans (but not animals): "animals are not self conscious and are there merely as a means to an end. That end is man." He continued: "our duties towards animals are merely indirect duties towards humanity". In other words, Kant believed one should not harm animals because in doing so one indirectly would damage humanity (one might see another human as less human and become prone to other kinds of cruelty). See: Kant, I. "Duties to Animals", in Animal Rights and Human Obligations. Eds. T. Regan & P. Singer. (New Jersey: Prentice Hall, 1976), p. 122.
27 - In his seminal essay On Truth and Lies in a Nonmoral Sense (1873), Friedrich Nietzsche (who once stopped a man from beating his horse) wrote: "As a "rational" being, [a person] now places his behavior under the control of abstractions. He will no longer tolerate being carried away by sudden impressions, by intuitions. First he universalizes all these impressions into less colorful, cooler concepts, so that he can entrust the guidance of his life and conduct to them. Everything which distinguishes man from the animals depends upon this ability to volatilize perceptual metaphors in a schema, and thus to dissolve an image into a concept." See Nietzsche, Friedrich. "On Truth and Lies in a Nonmoral Sense", in Philosophy and Truth, Edited by Daniel Breazeale (New York: Humanity, 1999), p. 84. In this essay, Nietzsche states that what we call "truth" is only "a mobile army of metaphors, metonyms, and anthropomorphisms." For him arbitrariness prevails within human experience: what one ordinarily calls "truth" is nothing but the invention of fixed conventions for practical purposes, particularly those of security and consistency.
28 - Buber expounds on the I-Thou relationship between human and non-human animals: "Man once "tamed" animals, and he is still capable of this singular achievement. He draws animals into his atmosphere and moves them to accept him, the stranger, in an elemental way, and to respond to him. He wins from them an often astonishing active response to his approach, to his addressing them, and moreover a response which in general is stronger and directer in proportion as his attitude is a genuine saying of Thou. Animals, like children, are not seldom able to see through any hypocritical tenderness. But even outside the sphere of taming a similar contact between men and animals sometimes takes place--with men who have in the depths of their being a potential partnership with animals, not predominantly persons of "animal" nature, but rather those whose very nature is spiritual". See: Buber, Martin. I and Thou (New York: Collier, 1987), p. 125.
29 - For a comprehensive examination of the approaches to animality within the Western tradition, and for a philosophical contribution towards a more respectful understanding of non-human animals, see: Fontenay, Elisabeth. Le silence des betes (Paris: Fayard, 1998).
30 - For the first time, gene therapy has unequivocally succeeded. French doctors used the treatment, which involves adding working genes to cells, to save the lives of several children who might otherwise have died of a severe immune disorder. See: Marina Cavazzana-Calvo, Salima Hacein-Bey, Geneviève de Saint Basile, Fabian Gross, Eric Yvon, Patrick Nusbaum, Françoise Selz, Christophe Hue, Stéphanie Certain, Jean-Laurent Casanova, Philippe Bousso, Françoise Le Deist, and Alain Fischer. "Gene Therapy of Human Severe Combined Immunodeficiency (SCID)-X1 Disease", Science 2000 April 28; 288: 669-672. For a popular account, see: Petitnicolas, Catherine. "Premier succès de la thérapie génique", Le Figaro, April 28, 2000, p. 16.
31 - A case in point is the notorious example of Monsanto's claim that it seeks to feed the world, and the rebuke from 24 African delegates to the Food and Agriculture Organization (FAO) negotiations on the International Undertaking for Plant Genetic Resources, June 1998. See: Bruno, Kenny. "Monsanto's Failing PR Strategy", in The Ecologist, Vol. 28, N. 5, Sept/Oct 1998, p. 291.
32 - Here I use the word "symbolic" in the sense that the artwork is not just an entity to be regarded for its intrinsic and unique properties or just a pragmatic way of accomplishing a goal, but also (and always) a means of producing a world of understanding. My use of the word is partially motivated by Erwin Panofky's application of Ernst Cassirer's Philosophy of Symbolic Forms (3 vol., 1923-29). See: Panofsky, E. Perspective as Symbolic Form (New York: Zone Books, 1991). On pages 40-41 Panofky says that perspective is "one of those 'symbolic forms' in which 'spiritual meaning' is attached to a concrete, material sign and intrinsically given to this sign."
"GFP Bunny" was first published in Dobrila, Peter T. and Kostic, Aleksandra (eds.), Eduardo Kac: Telepresence, Biotelematics, and Transgenic Art (Maribor, Slovenia: Kibla, 2000), pp. 101-131.
Excerpted in French in: Revue d'Esthétique, N. 39, 2001, pp. 67-68. Republished in German in: Kunstforum, N. 158, 2002, pp. 46-57 . Republished in Spanish in: HIPERCUBO(OK) : arte ciencia tecnologia en contextos proximos. Andres Burbano and Hernando Barragan, orgs. (Bogota, Colombia: Universidad de los Andes, Goethe Institut Bogota, 2002). Republished in Portuguesein: Galáxia: Revista Transdisciplinar de Comunicação, Semiótica, Cultura, N. 3, Programa de Estudos Pós-Graduados em Comunicação e Semiótica-PUC-SP, 2002, pp. 35-58. Republished in English, with a post-scriptum, in Leonardo, Vol. 36, No. 2, 2003, pp. 97-102. Republished in English, with a post-scriptum, in: Leonardo, Vol. 36, No. 2 (2003). Excerpted in Greek in : FuturaN. 8, September 2001, 292-295. Republished in Russian in: Dmitry Bulatov (ed.), Biomediale. Contemporary Society and Genomic Culture (Kaliningrad: The National Publishing House “Yantarny Skaz, 2004), pp. 360-373. Published in French in: Louise Poissant and Ernestine Daubner (org.), Art et Biotechnologies (Montréal: Presses de l’Université du Québec, 2005).
Originally published in Leonardo Electronic Almanac, Vol. 6, N. 11, December 1998, n/p/n (http://mitpress.mit.edu/e-journals/LEA/) - ISSN: 1071-4391.
TRANSGENIC ART
Eduardo Kac
New technologies culturally mutate our perception of the human body from a naturally self-regulated system to an artificially controlled and electronically transformed object. The digital manipulation of the appearance of the body (and not of the body itself) clearly expresses the plasticity of the newly formed and multifariously configured identity of the physical body. We observe this phenomenon regularly through media representations of idealized or imaginary bodies, virtual-reality incarnations, and network projections of actual bodies (including avatars). Parallel developments in medical technologies, such as plastic surgery and neuroprosthesis, have ultimately allowed us to expand this immaterial plasticity to actual bodies. The skin is no longer the immutable barrier that contains and defines the body in space. Instead, it becomes the site of continuous transmutation. While we try to cope with the staggering consequences of this ongoing process, it is equally urgent to address the emergence of biotechnologies that operate beneath the skin (or inside skinless bodies, such as bacteria) and therefore out of sight. More than make visible the invisible, art needs to raise our awareness of what firmly remains beyond our visual reach but which, nonetheless, affects us directly. Two of the most prominent technologies operating beyond vision are digital implants and genetic engineering, both poised to have profound consequences in art as well as in the social, medical, political, and economic life of the next century. Transgenic art, I propose, is a new art form based on the use of genetic engineering techniques to transfer synthetic genes to an organism or to transfer natural genetic material from one species into another, to create unique living beings [1]. Molecular genetics allows the artist to engineer the plant and animal genome and create new life forms. The nature of this new art is defined not only by the birth and growth of a new plant or animal but above all by the nature of the relationship between artist, public, and transgenic organism. Organisms created in the context of transgenic art can be taken home by the public to be grown in the backyard or raised as human companions. With at least one endangered species becoming extinct every day [2], I suggest that artists can contribute to increase global biodiversity by inventing new life forms. There is no transgenic art without a firm commitment to and responsibility for the new life form thus created. Ethical concerns are paramount in any artwork, and they become more crucial than ever in the context of bio art. From the perspective of interspecies communication, transgenic art calls for a dialogical relationship between artist, creature/artwork, and those who come in contact with it. Among the most common domesticated of mammals, the dog is a quintessentially dialogical animal; it is not self-centered, it is empathic, and it is often prone to extroverted social interaction [3]. Hence, my current work: GFP K-9. GFP stands for Green Fluorescent Protein, which is isolated from Pacific Northwest jellyfish (Aequorea Victoria) and which emits bright green light when exposed to UV or blue light [4]. Wild type Aequorea GFP absorbs light maximally at 395 nm and thefluorescence emission spectrum peaks at 510 nm [5]. The protein itself is 238 amino acids in length. The use of the Green Fluorescent Protein in a dog is absolutely harmless, since GFP is species independent and requires no additional proteins or substrates for green light emission. GFP has been successfully expressed in several host organisms and cells such as E. coli, yeast, and mammalian, insect, fish and plant cells [6]. A GFP variant, GFPuv, is 18 times brighter than regular GFP and can be easily detected by the naked eye when excited with standard, long-wave UV light. GFP K-9 (or "G," as I affectionately call it) will literally have a colorful personality and will be a welcome member of my family. Its creation may be years or decades away, because it faces several obstacles, among them the mapping of the dog genome. The number of genes in the entire dog genome is estimated at about 100,000 [7]. However, collaborative research is under way to map the canine genome, the results of which will eventually enable precision work at the level of canine morphology and behavior. Independently of the subtle phenotypic alteration, i.e., the delicate coat color change, GFP K-9 will eat, sleep, mate, play and interact with other dogs and humans normally. It will also be the founder of a new transgenic lineage. While at first the GFP K-9 project may seem completely unprecedented, human direct influence on dog evolution goes back at least 15,000 years [8]. In fact, the very existence of the domesticated dog we know today, with approximately 150 recognized breeds, is likely due to very early human-induced selective breeding of adult wolves that retained immature characteristics (a process known as "neoteny"). The similarities of physiognomy and behavior between the immature wolf and the adult dog are remarkable. Barking, for example, is typical of adult dogs but not adult wolves. The dog's head is smaller than the wolf's and more closely resembles that of an immature wolf. There are many other examples, including the very significant fact that dogs are also interfertile with wolves. After centuries of natural selective breeding, a turning point in human breeding of dogs took place in 1859, when the first exhibition of dogs prompted appreciation for their unique visual appearance. The search for visual consistency and for new breeds led to the concept of pure breed and to the formation of different groups of founding dogs. The practice is with us today and is responsible for many of the dogs we see in homes everywhere. The results of indirect genetic control of dogs by breeders are proudly expressed on the pages of the canine trade press. A quick look at the marketplace reveals ads for bulldogs "engineered for protection," mastiffs with a "careful genetic breeding program," dogos with an "exclusive bloodline," and Dobermans with a "unique genetic blueprint." Breeders aren't writing the genetic code of their dogs yet, but they are certainly reading and recording it. The American Kennel Club, for example, offers a DNA Certification Program to settle questions of purebred identification and parentage. If the creation of dogs has long historical roots, more recent but equally integrated into our daily experience is our use of hybrid living organisms. A case in point is the well-known work of botanist and scientist Luther Burbank (1849-1926) who invented many new fruits, plants, and flowers [9]. In 1871, for example, he developed the Burbank potato (also known as the Idaho potato). Because of its low moisture and high starch content, it has excellent baking qualities and is perfect for French fries. Since Burbank, artificial selective breeding of plants and animals has been a standard procedure widely used by farmers, scientists, and amateurs alike. Selective breeding is a long-term technique based on the indirect manipulation of the genetic material of two or more organisms and is responsible for many of the crops we eat and the livestock we raise. Domestic ornamental plants and pets thus invented are already so common that one rarely realizes that a loved animal or a flower offered as a sign of affection are the practical results of concerted scientific effort by humans. Hybrid Teas, for example are the typical roses found at the Florist Shop -- the classic image of the rose. The first Hybrid Tea was 'La France', raised by Giullot in 1867. A cherished companion such as the Catalina macaw, with its fiery orange breast and green-and-blue wings, does not exist in nature. Aviculturists mate blue-and-gold macaws with scarlet macaws to create this beautiful hybrid animal [10]. This is not at all surprising, considering that cross-species hybrid creatures have been part of our imaginary for millennia. In Greek mythology, for example, the Chimera was a fire-breathing creature represented as a composite of a lion, goat, and serpent. Sculptures and paintings of chimeras, from ancient Greece to the Middle Ages and on to modern avant-garde movements, inhabit museums worldwide. Chimeras, however, are no longer imaginary; today, nearly 20 years after the first transgenic animal, they are being routinely created in laboratories and are slowly becoming part of the larger genescape. Some recent scientific examples are pigs that produce human proteins [11], plants that produce plastic [12], and goats with spider genes designed to produce a strong and biodegradable fabric [13]. While in ordinary discourse the word "chimera" refers to any imaginary life form made of disparate parts, in biology "chimera" is a technical term that means actual organisms with cells from two or more distinct genomes. A profound cultural transformation takes place when chimeras leap from legend to life, from representation to reality. Likewise, there is a clear distinction between breeding and genetic engineering. Breeders manipulate indirectly the natural processes of gene selection and mutation that occur in nature. Breeders are unable, therefore, to turn genes on or off with precision or to create hybrids with genomic material so distinct as that of a dog and a jellyfish. In this sense, a distinctive trait of transgenic art is that the genetic material is manipulated directly: the foreign DNA is precisely integrated into the host genome. In addition to genetic transfer of existing genes from one species to another, we can also speak of "artist's genes," i.e., chimeric genes or new genetic information completely created by the artist through the complementary bases A (adenine) and T (thymine) or C (cytosine) and G (guanine). This means that artists now can not only combine genes from different species but easily write a DNA sequence on their word processors, email it to a commercial synthesis facility, and in less than a week receive a test tube with millions of molecules of DNA with the expected sequence. Genes are made of deoxyribonucleic acid (DNA) molecules. DNA carries all the genetic information necessary for a cell's duplication and for the building of proteins. DNA instructs another substance (ribonucleic acid, or RNA) how to build the proteins. RNA carries on the task using as its raw material cellular structures called ribosomes (organelles with the function of bringing together the amino acids, out of which proteins are made). Genes have two important components: the structural element (which codes for a particular protein) and the regulatory element ("switches" that tell genes when and how to perform). Transgene constructs, created by artists or scientists, also include regulatory elements that promote expression of the transgene. The foreign DNA may be expressed as extrachromosomal satellite DNA or it may be integrated into the cellular chromosomes. Every living organism has a genetic code that can be manipulated, and the recombinant DNA can be passed on to the next generations. The artist literally becomes a genetic programmer who can create life forms by writing or altering this code. With the creation and procreation of bioluminescent mammals and other creatures in the future [14], dialogical interspecies communication will change profoundly what we currently understand as interactive art. These animals are to be loved and nurtured just like any other animal. The result of transgenic art processes must be healthy creatures capable of as regular a development as any other creatures from related species [15]. Ethical and responsible interspecies creation will yield the generation of beautiful chimeras and fantastic new living systems, such as plantimals (plants with animal genetic material, or animals with plant genetic material) and animans (animals with human genetic material, or humans with animal genetic material). As genetic engineering continues to be developed in the safe harbor of scientific rationalism, nourished by global capital, it unfortunately remains partially sheltered from larger social issues, debates on ethics, and local historical contexts. The patenting of new animals created in the lab [16] and of genes of foreign peoples [17] are particularly complex topics -- a situation often aggravated, in the human case, by the lack of consent, equal benefit, or even understanding of the processes of appropriation, patent, and profit on the part of the donor. Since 1980 the U.S. Patent and Trademark Office (PTO) granted several transgenic animal patents, including patents for transgenic mice and rabbits. Recently the debate over animal patents has broadened to encompass patents on genetically engineered human cell lines and synthetic constructs (e.g., "plasmids") incorporating human genes. The use of genetics in art offers a reflection on these new developments from a social and ethical point of view. It foregrounds related relevant issues such as the domestic and social integration of transgenic animals, arbitrary delineation of the concept of "normalcy" through genetic testing, enhancement and therapy, health insurance discrimination based on results of genetic testing, and the serious dangers of eugenics. As we try to negotiate current disputes, it is clear that transgenetics will be an integral part of our existence in the future. It will be possible, for example, to harness the glow of the jellyfish protein for optical data storage devices [18]. Transgenic crops will be a predominant part of the landscape, transgenic organisms will populate the farm, and transgenic animals will become part of our expanded family. For better or worse, vegetables and animals we eat will never be the same. Genetically altered soybeans, potatoes, corn, squash, and cotton have been widely planted and consumed since 1995 [19]. The development of "plantibodies," i.e., human genes transplanted into corn, soy, tobacco, and other plants to produce acres of pharmaceutical-quality antibodies, promises cheap and abundant much needed proteins [20]. While in many cases research and marketing strategies place profit above health concerns (the risks of commercialization of unlabeled and potentially sickening transgenic food can't be ignored) [21], in others biotechnology seems to offer real promises of healing in areas presently difficult to treat effectively. Pigs are a case in point. Because porcine physiological function is similar in many ways to that of humans, and because society at large agrees to breed and slaughter pigs for the food industry (unlike nonhuman primates, for example), medicine is experimenting with genetically altered pigs [see 11]. These pigs produce human proteins that prevent rejection and are being tested for liver and heart transplant (unmodified pig livers are already used as a "bridge" to sustain patients waiting for a human donor), for brain transplant (fetal pig neural cells are used to reconnect the nerve tissue in Parkinson's patients), and to cure diabetes (through the transplant of insulin-producing beta cells) [22]. In the future we will have foreign genetic material in us as today we have mechanical and electronic implants. In other words, we will be transgenic. As the concept of species based on breeding barriers is undone through genetic engineering [23], the very notion of what it means to be human is at stake [24]. However, this does not constitute an ontological crisis. To be human will mean that the human genome is, not a limitation, but our starting point. | Jellyfish (Aequorea Victoria) GFP K-9, Eduardo Kac, 1998/99. Green Fluorescent Protein structure solved by Fan Yang and George N. Phillips, Jr. of Rice University and Larry Moss of Tufts University School of Medicine. Figure designed and rendered by Tod D. Romo of Rice University.Photo: David Wrobel Terra cotta Colima dog, circa 700 B.C. - 200 A.D, representing the Mexican hairless dog, a possible GFP K-9 breed. "Cave Canem" (Beware of Dog), mosaic of a guard dog on the floor of the entrance hall to the House of the Tragic Poet, Pompeii, Italy, buried in the 79 A.D. eruption of the mount Vesuvius. Photo: Eduardo Kac. This painted detail appears on an outer face of the wooden coffin of Khuw. The deceased leads his dog on a leash. From the tomb of Khuw at Asyut, Egypt. Twelfth Dynasty (1991-1783 B.C.). Photo: Patrick Francis Houlihan The classic Chimera of Arezzo, the best known image of the myth. The Chimera of Arezzo is a bronze statue of Etruscan origin (c. 5th century BC), approximately 80 cm (32") in height. It was found near Arezzo, in Italy, in 1553. Collection Archeological Museum, Firenze. Reproduced with permission of the Archeological Museum, Firenze. The earliest known morphological evidence of what was probabably dog remains dates to around 17,000 years ago in central Russia. GFP K-9 will be produced with a technique called microinjection. The DNA construct will be microinjected in a pronuclear embryo, which will be used for implantation and production of a founder GFP transgenic dog. Production of GFP K-9. (A) Fertilized eggs are removed from a female and (B) the DNA carrying the GFP gene is injected into the male pronucleus. (C) The eggs are then implanted into a carrier. (D) Some of the pups express the GFP gene. | |
NOTES
1 - George Gessert, an artist who works with plant hybridization, identified Edward Steichen, well known for his photographic work, as the first artist to propose and produce genetic art. See: Gessert, George. "Notes on Genetic Art", Leonardo, Vol. 26, No. 3, 1993, p. 205. Indeed, in 1949 Steichen wrote: "The science of heredity when applied to plant breeding, which has as its ultimate purpose the aesthetic appeal of beauty, is a creative act." Quoted in: Ronald J. Gedrim, "Edward Steichen's 1936 Exhibition of Delphinium Blooms," in History of Photography Vol. 17, No. 4 (Winter 1993) pp. 352--363.
2 - According to the World Wildlife Federation the top 10 most endangered species are: 1.Black Rhino; 2.Giant Panda; 3.Tiger; 4.Beluga Sturgeon; 5.Goldenseal; 6.Alligator Snapping Turtle; 7.Hawksbill Turtle; 8.Big Leaf Mahogany; 9.Green-Cheeked Parrot; 10.Mako Shark.
3 - Von Kreisler, Kristin. The Compassion of Animals (Rocklin, CA: Prima Publishing, 1997). This book is a compilation of informal accounts of the sympathy, kindness and loyalty of dogs and other animals towards species other than their own. For a specific discussion of human-canine interaction, see: Serpell, James (ed.). The Domestic Dog: Its Evolution, Behaviour, and Interactions With People (Cambridge; New York : Cambridge Univ Pr 1996); and Wendt, Lloyd M. Dogs: A Historical Journey: The Human/Dog Connection Through the Centuries (New York: Howell Book House, 1996).
4 - Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. and Prasher, D.C. (1994) Green fluorescent protein as a marker for gene expression. Science, 263: 802-805; Inouye, S. and Tsuji, F.I. (1994) Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Letters, 341: 277-280.
5 - Ward, W.W., Cody, C.W., Hart, R.C., and Cormier, M.J.: "Spectrophotometric identity of the energy-transfer chromophores in Renilla and Aequorea green fluorescent protein". Photochem. Photobiol. 31 (1980) 611-615.
6 - Niedz, Randall P., Sussman, Michael R., Satterlee, John S. (1995) Green fluorescent protein: an in vivo reporter of plant gene expression. Plant Cell Reports, 14:403-406; Amsterdam, A., Lin, S. & Hopkins, N. (1995) The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. Devel. Biol. 171:123-129; Pines, J. (1995) GFP in mammalian cells. Trends Genet. 11:326-327; Holden, C. (1997) Jellyfish light up mice. Science, 277 (4 July): 41; Ikawa, Masahito; Yamada, Shuichi; Nakanishi, Tomoko; Okabe, Masaru. "'Green mice' and their potential usage in biological research", FEBS Letters.Volume 430, Number 1-2, 1998, pp. 83; Cormack, B. P., Bertram, C., Egerbom, M., Gold, N. A., Falkow, S. and Brown, A. J. (1997) Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology 143:303-311; Yeh, E., Gustafson, K. and Boulianne, G. L. (1995) Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc. Natl. Acad. Sci. USA 92:7036-7040.
7 - Two key obstacles to the creation of GFP K-9 are gene targeting technology and in-vitro fertilization for dogs. These obstacles are on the verge of being overcome. On September 1999, PPL Therapeutics announced the creation of the first higher transgenic mammal by targeted gene manipulation. See: Sophia Fox, "European Roundup", Genetic Engineering News, September 1, 1999, p. 54. The Dog Genome project will further contribute to this work. See: Thorpe-Vargas, S., Coile, D. Caroline., Cargill, J., "Variety Spices Up The Canine Gene Pool", Dog World (May 1998), Vol. 83, N. 5, p. 27. At last, in-vitro fertilization for dogs will be resolved by the "Missyplicity Project". While there is a significant difference between a cloned dog and a transgenic dog, it is worth mentioning that the "Missyplicity Project" aims at producing the first cloned dog, from a mutt pet called Missy (mixed border collie and husky). In August of 1998 a wealthy couple (Mr. and Mrs. John Sperling) donated $2.3 million to Texas A & M University to implement the project, with a two-year deadline. The project team is comprised of scientists Mark Westhusin, Duane Kraemer, and Robert Burghardt. For information on the "Missyplicity Project", see: http://www.missyplicity.com. Since green fluorescent protein will not express in hair (because hair has no cells; it is basically extruded protein), hairless dogs are the best candidates for the GFP K-9 project. Breeds of hairless dogs include: American Hairless Terrier, Mexican Xoloitzcuintli (or "Xolo"), Peruvian Inca Orchid, and the Argentinian Pila. For a general reference on pre-Columbian hairless dogs, see: Fernandez de Cordoba Joaquin: "Los Perros Pre-colombianos de America". Journal "El Hijo Prodigo". Mexico, March 1945. Specific contemporary references on hairless dogs can be found in: Whitney, Leon F., D.V.M., "How to Breed Dogs", Revised Edition, Eleventh Printing, Howell Book House, Inc. New York, NY, 1984.
8 - Thurston, Mary Elizabeth. The Lost History of the Canine Race: Our 15,000-Year Love Affair with Dogs (Kansas City: Andrews & McMeel, 1996).
9 - Burbank, Luther. The Harvest Of The Years (Boston; New York: Houghton Mifflin, 1927); Dreyer, Peter. A gardener touched with genius: the life of Luther Burbank (Santa Rosa, Calif.: L. Burbank Home & Gardens, 1993).
10 - The common roses of the twentieth century, such as Hybrid Teas, Floribundas and Grandifloras, were created by crossing the European Roses and the Chinas, Teas, and Meditteranean types, and many others during the 1700's and 1800's. See: Bennett, J. H. Experiments in Plant Hybridisation (London: Oliver and Boyd, 1965) and Beales, Peter. Roses (Collins-Harvill (HarperCollins), 1991). On a trip to the Sentosa Island, in Singapore, in 1998, I had the opportunity to interact playfully with a Catalina macaw, perched first on my shoulder and then on my forearm. I was able to appreciate its distinct coloration and to observe and appreciate its interaction with other macaws and humans. A description of the Catalina macaw and other hybrids can be found in: Lantermann, Werner. Encyclopedia of Macaws (Neptune City, NJ: T.F.H., 1995), p. 173. See also: Decoteau, A. E. Handbook of Macaws (Neptune City, NJ: T.F.H., 1982). Other examples of beautiful birds invented by humans which don't exist anywhere in the wild are the Harlequin Macaw (hybrid derived from breeding a Blue and Gold and a Green Winged) and the Parisian Frilled Canary, which has oddly frilled feathers.
11 - Cozzi, E. and White, DJG . "The generation of transgenic pigs as potential organ donors for humans," Nature , Med 1, 1995, p. 964-966. 12 - Moore, Samuel K. "Natural Synthetics: Genetically engineered plants produce cotton/polyester blends and nonallergenic rubber", Scientific American, February 1997, p. 36-37.
13 - Cohen, Phil. "Spinning Steel: Goats and Spiders are working together to create a novel material", New Scientist, Vol. 160, N. 2155, 10 October 1998, p. 11. Another combination of insect and mammal is a mouse with fly genes. In this case, the research has the goal of demonstrating that the biochemical activity utilized in mouse to mediate brain development has been retained by certain kinds of proteins across the phyla. See: Mark C. Hanks, Cynthia A. Loomis, Esther Harris, Chung-Xiang Tong, Lynn Anson-Cartwright, Anna Auerbach and Alexandra Joyner. "Drosophila engrailed can substitute for mouse Engrailed1 function in mid-hindbrain, but not limb development". Development 125 (22), 1998, 4521-4530.
14 - Brem, G. and Müller, M. "Large Transgenic Mammals", in Maclean, N. (ed.) Animals With Novel Genes (New York: Un. of Cambridge, 1994), pp. 179-244; Ikawa, M., Kominami, K., Yoshimura, Y., Tanaka, K., Nishimune, Y. & Okabe, M. (1995) "Green fluorescent protein as a marker in transgenic mice". Devel. Growth Differ. 37:455-459; Youvan, D. C. (1995) Green fluorescent pets. Science, 268 (April 14): 264. Pennisi, Elizabeth. "Transgenic Lambs From Cloning Lab", Science, Vol. 277, 1 August 1997, p. 631.
15 - Anthony Dyson and John Harris (eds.) Ethics and Biotechnology (New York: Routledge, 1994); L. F. M. Van Zutphen and M. Vann Der Meer (eds.). Welfare Aspects of Transgenic Animals (Berlin; New York: Springer Verlag, 1995).
16 - Schneider, Keith. "New Animal Forms Will Be Patented," New York Times (April 17, 1987); Adler, Reid G. "Controlling the Applications of Biotechnology: A Critical Analysis of the Proposed Moratorium on Animal Patenting," Harvard Journal of Law and Technology, vol. 1 (1988); Andrews, Edmund L. "U.S. Seeks Patent on Genetic Codes, Setting Off Furor", New York Times (October 21, 1991): A1, A12; Marshall, Eliot. "Companies Rush to Patent DNA", Science, Vol. 275, 7 February 1997, pp. 780-781. Marshall, Eliot. "The Mouse That Prompted a Roar", Science, Vol. 277, 4 July 1997, pp. 24-25.
17 - Penenber, Adam L. "Gene Piracy", 21C-Scanning the Future, N. 2, 1996, pp. 44-50.
18 - Dickson, Robert M. et al: "On/off blinking and switching behaviour of single molecules of green fluorescent protein", Nature 388, 355-358 (1997) Letters to Nature. For a popular account of the potential use of this technology, see: Tatterson, Kathleen G. "Jellyfish Genes Eyed for Optical Storage", Photonics Spectra, September 97.
19 - Brown, Kathryn S. "With New Technology, Researchers Engineer A Plant For Every Purpose", The Scientist, Vol. 9, N. 19, October 2, 1995, pg.14-15; Jane Rissler and Margaret Mellon. The Ecological Risks of Engineered Crops (Cambridge: MIT Press, 1996).
20 - Gibbs, W. Wayt. "Plantibodies: Human antibodies produced by field crops enter clinical trials", Scientific American, November 1997, p. 44.
21 - Tokar, Brian. "Monsanto: A Checkered History", in "The Monsanto Files", special issue of The Ecologist, Vol. 28, N. 5, September/October 1998, pp. 254-261; Kimbrell, Andrew. "Why Biotechnology and High-Tech Agriculture Cannot Feed the World", in The Monsanto Files", special issue of The Ecologist, Vol. 28, N. 5, September/October 1998, pp. 294-298.
22 - L Makowka, DV Cramer, A Hoffman, M Breeda, L Sher, G Eiras-Hreha, PJ Tuso, C Yasunaga, CA Cosenza, G Du Wu, FA Chapman & L Podesta: "The use of a pig liver xenograft for temporary support of a patient with fulminant hepatic failure". Transplantation 59, 1654-1659 (1995); DJG White, GA Langford, E Cozzi & VJ Young: "Production of pigs transgenic for human DAF: A strategy for xenotransplantation". Xenotransplantation 2, 213-217 (1995); DKC Cooper, E Kemp, JL Platt & DJG White (eds.), Xenotransplantation: the transplantation of organs and tissues between species (Berlin; New York: Springer, 1997).
23 - Some exemplary cases are the production of rat sperm in the testes of a mouse (which clearly suggests that human sperm could also be produced in the testicles of a rodent), the innitial division of a human cell in the egg of a cow, and the creation of an embryonic clone of an adult woman in South Korea. See: Clouthier, David E. et al: Rat spermatogenesis in mouse testis. Nature 381, 418-421 (1996) Letters to Nature; Robl, J M; Jerry, D J; Stice, S; Cibelli, J. Response - Quiescence in Nuclear Transfer, Science. Volume 281, Number 5383, 1998, p. 1611; BBC Online, "S. Korean scientists claim human cloning success", December 16, 1998 (http://www.news.bbc.co.uk).
24 - In an article for the New Scientist (October 23, 1999), entitled "We Have the Power", Andy Coghlan reported that a Canadian company, Chromos Molecular Systems of Burnaby, British Columbia, presented preliminary results of experiments with mice given an artificial chromosome. He wrote: "By taking cell samples and exposing them to fluorescent dyes that bind to different parts of the chromosome, Chromos's scientists were able to discover which animals had accepted the chromosome. When the mice carrying the extra chromosome were crossed with normal mice, it was inherited in exactly the same way as the animals' natural chromosomes." This is an indication that human germline gene therapy is becoming a practical possibility. It shows that one day it might be possible, for medical reasons, to add synthetic genes to human embryos which otherwise would develop with serious or fatal congenital defects.
Republished in English and German in: Ars Electronica 99 - Life Science (Vienna, New York: Springer, 1999), pp. 289- 296. Also in English in: Parol - Quaderni d'arte e di epistemologia, ottobre/novembre 1999, n/p/n, Università di Bologna, Italy (http://www.unibo.it/parol) - ISSN: 88-7232-314-2. Republished in Spanish and English in Futuros Emergentes: Arte, Interactividad y Nuevos Medios, Angela Molina and Kepa Landa, eds. (Valencia, Spain: Institució Alfons el Magnànim-Diputación de Valencia. Centre Cultural la Beneficencia, 2000, pp. 59-66. Also in Spanish and Basque in the magazine Zehar N. 45, Verano 2001, 22-25.. The French translation appeared in: Interfaces et sensorialité, Louise Poissant, org., Montreal, Groupe de recherche en arts mediatiques, Presses de l'Université du Québec, 2003, p. 175. The Portuguese translation was published in Revista Ars, N. 3, 2005, Escola de Comunicações e Artes, Universidade de São Paulo. The Danish translation will appear in the journal Passepartout, Afdeling for Kunsthistorie, N. 27, Institut for Aestetiske Fag, Aarhus Universitet, Aarhus, Denmark, 2007, pp.24-39.
L’ART TRANSGÉNIQUE
Eduardo Kac
Les nouvelles technologies engendrent une mutation de notre perception du corps humain de sorte qu’il n’est plus perçu comme un système naturel, autorégulateur, mais comme un objet controlé artificiellement et transformé électroniquement. Les modifications apportées par les technologies du numérique à l’apparence du corps (et non du corps lui-même) révèlent clairement la plasticité identitaire du corps, autant dans ses nouveaux aspects que dans ses configurations diverses. Nous observons régulièrement ce phénomène dans les représentations médiatiques de corps idéalisés ou imaginaires, dans les incarnations de la réalité virtuelle et dans les projections en réseau de corps véritables (incluant les avatars). Des développements parallèles dans le domaine des technologies médicales, telles la chirurgie plastique et les neuro-prothèses, nous ont finalement permis d’étendre cette plasticité immatérielle à des corps réels. La peau n’est plus la barrière immuable qui contient et définit le corps dans l’espace, elle devient plutôt le site de transmutations continuelles. Alors que nous tentons de faire face aux vertigineuses conséquences de ce processus, il urge aussi que nous abordions la problématique de l’émergence de biotechnologies sous-cutanées (ou même contenues à l’intérieur de corps sans peau, telle la bactérie) et, par conséquent, situées hors de la vue. L’art ne doit pas que rendre visible l’invisible, mais nous rendre plus conscients de ce qui existe au-delà de la vue et qui nous touche néanmoins de façon directe. Deux des plus importantes technologies qui opèrent au-delà de la vue sont les implants numériques et le génie génétique. Ces technologies auront de profondes conséquences dans le domaine de l’art ainsi que dans la vie sociale, médicale, politique et économique du siècle à venir.
Je suggère que l’art transgénique est une nouvelle forme d’art basée sur le recours aux techniques de l’ingénierie génétique afin de transférer des gènes synthétiques aux organismes, ou de transférer du matériel génétique naturel d’une espèce à une autre, le tout dans le but de créer des être vivants inédits [1]. La génétique moléculaire permet à l’artiste d’organiser les génomes végétal et animal et de créer ainsi de nouvelles formes de vie. L’essence de cette nouvelle forme d’art est définie non seulement par la genèse et la croissance d’une nouvelle plante ou d’un nouvel animal, mais surtout par la nature de la relation entre l’artiste, le public et l’organisme transgénique. Étant donné qu’au moins une espèce en voie d’extinction disparaît à jamais quotidiennement [2], je suggère que les artistes puissent contribuer à accroître la biodiversité globale en inventant de nouvelles formes de vie. Il n’y a pas d’art transgénique possible sans responsabilité et sans engagement ferme envers la nouvelle forme de vie ainsi créée. Les considérations d’ordre éthique sont d’importance primordiale dans le cas de toute œuvre d’art et elles deviennent d’autant plus décisives dans le contexte de l’art biologique. Du point de vue de la communication entre les espèces vivantes, l’art transgénique exige une relation dialogique entre l’artiste, la créature et ceux qui entrent en contact avec elle.
De tous les mammifères domestiques usuels, le chien est celui qui se prête le mieux à une relation de ce genre; il n’est pas égocentrique, il est empathique et il est souvent sujet à des interactions sociales extroverties [3]. De là, mon travail en cours intitulé GFP K-9. GFP (Green Fluorescent Protein) réfère à la protéine fluorescente verte, isolée de la méduse du nord-ouest pacifique Aequorea Victoria, qui émet une brillante lumière verte lorsque exposée à un rayonnement ultra-violet ou à de la lumière bleue [4]. La GFP de l’aequorea absorbe la lumière de façon maximale à 395 nm et son émission spectrale fluorescente atteint son apogée à 509 nm. La protéine fluorescente verte (GFP) est indépendante de l’espèce de l’organisme qui l’accueille et ne nécessite aucune protéine ou substrat additionnel pour l’émission de sa lumière, elle est absolument innofensive pour le chien. La GFP subsiste dans divers organismes et cellules hôtes tels leE. coli, la levure et les cellules animales et végétales [5]. Une variante de la GFP, la GFPuv, est 18 fois plus brillante que la GFP régulière et peut facilement être décelée à l’œil nu lorsque excitée par un rayonnement ultra-violet standard, de grande longueur d’onde. Le canin GFP K-9* (que j’appelle affectueusement «G») sera doté d’une personnalité littéralement colorée et deviendra un membre de ma famille. Sa création n’est peut-être qu’à des années ou à des décennies puisqu’il reste plusieurs étapes à franchir, dont la cartographie du génome canin. Ce génome contient environ 100,000 gènes [6]. Une recherche commune est néanmoins en cours afin de cartographier ce génome, ce qui permettra éventuellement d’effectuer un travail de précision au niveau de la morphologie et du comportement canin. Indépendamment de l’altération subtile du phénotype, soit la légère variation de la couleur de son pelage, le canin GFP K-9 mangera, dormira, s’accouplera, jouera et interagira normalement avec ses congénères ainsi qu’avec les humains. Il sera aussi l’ancêtre d’une nouvelle lignée transgénique.
Le projet GFP K-9 semble à prime abord sans précédent, pourtant l’humain a bien créé le chien, il y a de celà au-moins 15,000 ans [7]. En fait, l’existence même du chien domestique tel que nous le connaissons aujourd’hui, dans ses 150 races reconnues officiellement, résulte probablement des croisements sélectifs opérés par les humains sur des loups adultes qui ont conservé des traits immatures (processus aussi appelé «néoténie»). Les similitudes d’ordres physionomique et comportementale entre le loup immature et le chien adulte sont remarquables. Aboyer, par exemple, est typique du chien adulte mais non du loup adulte. La tête du chien est plus petite que celle du loup et ressemble plutôt à celle du loup immature. Parmi les faits qui corroborent à cette théorie, un des plus significatifs est que le chien peut être croisé avec le loup. Après des siècles d’élevage sélectif, un point décisif est atteint vers 1850 alors que le chien d’exposition est apprécié pour sa seule apparence visuelle. La recherche de nouvelles races et de l’uniformité visuelle ont mené au concept de race pure et à la création de différents groupes de chiens initiateurs de lignées. Cette pratique nous est encore connue, on lui doit l’existence de nombreux chiens domestiques. Les résultats du contrôle génétique des éleveurs de chiens sont fièrement présentés dans la presse spécialisée. Un coup d’œil rapide sur ce marché nous fait voir des annonces pour des bouledogues «conçus [engineered] pour la protection,» des mastifs ayant «un programme soigné d’élevage génétique», des dogos dotés de «sang exclusif» et des dobermans ayant un «plan génétique unique». Les éleveurs n’en sont pas encore à écrire le code génétique de leurs chiens, mais ils les lisent et les enregistrent certainement. Le American Kennel Club, par exemple, offre un programme de certification de l’ADN afin de régler les questions d’identification et de parenté des races pures.
Si la création du chien est une vieille histoire, notre recours à des espèces hybrides, quoique plus récent, est tout aussi intégré à notre expérience du quotidien. Un cas exemplaire nous est donné par le travail d’un célèbre scientifique, le botaniste Luther Burbank (1849-1926), inventeur de plusieurs fruits, plantes et fleurs [8]. On lui doit le développement de la pomme de terre «Burbank» (ou «Idaho») en 1871. En raison de son faible taux d’humidité et de sa grande concentration de féculents, elle possède d’excellentes qualités pour la cuisson au four ainsi que pour la friture. Depuis l’avènement de la «Burbank», la reproduction sélective et artificielle de plantes et animaux est un procédé standard auquel ont recours bon nombre de fermiers, de scientifiques et d’amateurs. La reproduction sélective est une technique à longue échéance basée sur la manipulation indirecte du matériel génétique d’au moins deux organismes. Elle est à l’origine de plusieurs des récoltes qui nous sustentent ainsi que des bestiaux que nous élevons. Les plantes ornamentales et les animaux domestiques de notre invention sont déjà tellement répandus que nous ne nous rendons que rarement compte qu’un animal chéri ou une fleur offerte en gage d’affection résulte d’efforts techniques concertés. Les «Hybrid Teas», par exemple, sont typiques des roses que l’on retrouve chez le fleuriste, le modèle classique de la rose. La première «Hybrid Tea» fut La France, produite par Giullot en 1867. Par ailleurs un animal familier tel l’ara Catalina, avec sa poitrine orangée et ses ailes de bleu et de vert, n’existe pas non plus dans la nature. Les aviculteurs croisent l’ara bleu et or avec l’ara écarlate afin de créer ce bel animal hybride [9].
Tout cela ne saurait nous surprendre puisque les créatures hybrides inter-espèces peuplent notre imaginaire depuis des millénaires. Dans la mythologie grecque, par exemple, la chimère est une créature qui crache le feu, elle est représentée par un amalgame de parties provenant du lion, de la chèvre et du serpent. On retrouve des sculptures et des peintures de chimères provenant de diverses époques, de la Grèce antique, du Moyen âge et des mouvements d’Avant-garde moderne et ce dans des musées des quatre coins du monde. Toutefois, les chimères ne sont plus aujourd’hui que des créatures imaginaires; environ 20 ans après l’apparition du premier animal transgénique, elles sont créées de façon routinière dans les laboratoires et elles s’incorporent lentement dans le paysage génétique. Notons, parmi des exemples récents du domaine scientifique, des porcs qui produisent des protéines humaines [10], des plantes qui produisent des plastiques [11] et des chèvres aux gènes d’araignées, conçues pour produire un tissu résistant et biodégradable [12]. Alors que dans le langage populaire le mot chimère réfère à quelconque forme de vie imaginaire constituée de parties disparates, chimère, dans le langage de la biologie, est un terme technique pour des organismes réels constitués de cellules provenant de deux ou plusieurs génomes distincts. Une transformation culturelle profonde a lieu quand les chimères passent de la légende à la vie, de la représentation à la réalité.
Il faut distinguer croisement d’espèces et génie génétique. Les éleveurs manipulent indirectement les processus naturels de sélection et de mutation génétiques, tels qu’il se produisent dans la nature. Les éleveurs sont donc incapables d’engager ou de désengager avec précision les gênes, pas plus que de créer des hybrides avec du matériel génomique distinct, aussi distinct que celui d’un chien peut l’être de celui d’une méduse. En ce sens, un trait distinctif de l’art transgénique est que le matériel génétique est manipulé directement: l’ADN étranger est intégré avec précision dans le génome hôte. En plus du transfert du matériel génétique inhérent à un espèce vers un nouvel hôte, nous pouvons aussi parler de «gênes d’artiste», c’est-à-dire de gênes chimériques ou de nouvelles informations génétiques complètement créés par l’artiste au moyen des bases complémentaire A (adénine) et T (thymine) ou C (cytosine) et G (guanine). Ceci signifie que désormais les artistes peuvent non seulement combiner des gênes provenant de différentes espèces mais aussi écrire aisément une séquence d’ADN au moyen de leur logiciel de traitement de texte, l’envoyer par email à une entreprise commerciale de synthèse et et recevoir par courrier postal dans la semaine suivante une éprouvette contenant des millions de molécules d’ADN de la séquence commandée.
Les gênes sont constitués de molécules d’acide désoxyribonucléique (ADN). L’ADN contient l’information génétique nécessaire à la reproduction cellulaire et à la synthèse des protéines. L’ADN indique à une autre substance (l’acide ribonucléique, ou ARN) comment synthétiser les protéines. L’ARN accomplit cette tâche en utilisant comme matière première les structures cellulaires appelées ribosomes (organites ayant pour fonction l’union des acides aminés, à partir desquels les protéines sont faites). Le programme d’instruction du gêne est écrit sur un composé d’ADN appelé polymérase. Le polymérase d’ADN utilise une seule chaîne d’ADN en tant que patron afin de réaliser une autre chaîne d’ADN. Les gênes ont deux éléments importants: l’élément structurel (qui encode selon la protéine donnée) et l’élément régulateur («commutateurs» qui indiquent au gêne que faire et quand le faire). Les constructions transgéniques, créées par des artistes ou des scientifiques, comportent aussi des éléments régularisateurs qui permettent au transgêne de se manifester. L’ADN étranger peut se manifester en tant que satellite ADN extra-chromosonique ou s’incorporer dans les chromosomes cellulaires. Chaque organisme vivant possède un code génétique manipulable, et l’ADN recombinant peut passer aux générations suivantes. L’artiste devient alors un programmateur génétique dans le sens littéral du terme, qui peut créer des formes de vie en inscrivant ou en modifiant ce code. Avec la création et la procréation de mammifères bioluminescents, et autres créatures, [13], la communication entre espèces modifiera profondément demain ce que nous considérons aujourd’hui comme étant de l’art interactif. Ces animaux doivent êtres aimés et soignés comme tout autre animal.
Les processus d’art transgénique doivent mener à des créatures saines, pouvant se développer normalement, comme n’importe quelle créature d’une espèce apparentée [14]. L’entreprise sérieuse et éthique de création inter-espèce mènera à la genèse de belles chimères et de fantastiques nouveaux systèmes vivants, tels les plantimaux (plantes dotés de matériel génétique animal, ou animaux dotés de matériel génétique végétal) et animains (animaux dotés de matériel génétique humain, ou humains dotés de matériel génétique animal).
Alors que le génie génétique continue son développement en sécurité dans le refuge du rationalisme scientifique, soutenu par le capital planétaire, il demeure malheureusement à l’écart des enjeux sociaux plus larges, des contextes historiques locaux et des débats sur l’éthique. L’octroi de brevets pour de nouveaux animaux créés en laboratoire [15] et pour des gênes de peuples étrangers [16] est un sujet particulièrement complexe - rendu plus grave dans le cas des humains par l’absence non seulement du consentement de la part du donneur, mais aussi de bénéfices compensatoires, ou par l’incompréhension des processus de l’appropriation, du brevet et du profit. Depuis 1980, l’Office des brevets et des marques de commerce américain a accordé plusieurs brevets transgéniques animaux, incluant des brevets pour des souris et lapins transgéniques. Le débat portant sur les brevets animaux s’est récemment élargi pour englober les brevets sur des «lignes» de cellules humaines et produits synthétiques (par exemple les «plasmides») incorporant des gênes humains. Le recours à la génétique dans le domaine de l’art favorise une réflexion sociale et éthique sur ces nouveaux développements. L’art génétique met en relief d’importantes questions connexes tels l’intégration domestique et sociale d’animaux transgéniques, l’arbitraire délimitation du concept de ce qui est «normal» au moyen du test, de l’amélioration et de la thérapie génétiques, la discrimination dans le domaine de l’assurance-santé basée sur les résultats de tests génétiques et, enfin, les graves dangers de l’eugénie.
Alors que nous tentons de nous orienter dans les débats actuels, il est clair que la transgénèse fera partie de notre futur. Il sera alors possible, par exemple, d’exploiter la luminescence de la protéine de la méduse dans les appareils de stockage optique d’information[17]. Les cultures transgéniques seront prédominantes, des organismes transgéniques peupleront la ferme et des animaux transgéniques feront partie de notre famille élargie. Pour le meilleur ou pour le pire, les légumes et animaux dont nous nous sustentons ne seront plus jamais les mêmes. Les fèves soja, les pommes de terre, le maïs, les courges, et le coton modifiés génétiquement ont été plantés et consommés sur une vaste échelle depuis 1995 [18]. Le développement de «planticorps», c’est-à-dire de gênes humains transplantés dans le maïs, le soja, le tabac et autres plantes pour produire des anticorps de qualité pharmaceutique, promet une abondance de protéines bon marché. Si la recherche et les stratégies de marketing placent souvent le profit au-dessus des considérations d’ordre sanitaire (on ne peut ignorer les risques que représentent la commercialisation de nourriture transgénique non identifiée et potentiellement malsaine) [20], la biotechnologie semble par ailleurs offrir de réelles promesses de guérison là où le traitement est encore difficile. Le porc en est un exemple saisissant, étant donnés les similitudes d’ordre physiologique qu’il a avec l’humain ainsi que le large consensus social entourant son élevage et abattage pour les besoins de l’industrie alimentaire (alors que ce n’est pas le cas en ce qui a trait aux primates non humains, par exemple). La médecine expérimente avec des porcs altérés génétiquement [voir 10] qui synthétisent des protéines humaines qui préviennent le rejet des tissus transplantés, ils sont aussi testés pour les greffes de cœurs et de foies (les foies de porcs non modifiés sont déjà utilisés comme organes de secours pour les patients en attente de donneurs humains), de greffes de cerveaux (les cellules neurales de fétus de porcs sont utilisées pour reconnecter le tissus nerveux chez les patients qui souffrent de la maladie de Parkinson), et pour soigner les diabétiques (par la transplantation de cellules bêta qui produisent de l’insuline) [21]. Nous serons demain les hôtes de gênes étrangers tout comme nous portons aujourd’hui des implants mécaniques et électroniques. En d’autres mots, nous serons transgéniques. Le fait que l’ingénierie génétique rend périmée le concept d’espèce basé sur la notion traditionnelle de reproduction [22] met en jeu l’idée de ce qu’est l’humain. Pourtant, ceci ne constitue pas une crise ontologique. Être humain signifiera que le génome humain n’est pas notre limite mais notre point de départ.
(traduction de Marc Boucher, juillet 2001)
RÉFÉRENCES
1 - Selon George Gessert, artiste qui hybride des plantes, Edward Steichen serait le premier artiste à proposer et à produire de l’art génétique. Steichenbien est par ailleurs connu en tant que photographe. Voir: Gessert, George: «Notes on Genetic Art», Leonardo, Vol.26, No. 3, 1993, p. 205. Steichen écrivait en 1949 que: «La science de l’hérédité, lorsque appliquée à la reproduction de plantes pour l’attrait de leur beauté, dans un but esthétique, est un acte créatif». Cité par: Gedrim, Ronald J.: «Edward Steichen’s 1936 Exhibition of Delphinium Blooms» in History of Photography Vol. 17, No. 4 (Winter 1993), p. 352-363
2 - Selon le World Wildlife Federation, les dix espèces les plus menacées sont: 1. Le rhinocéros noir; 2. Le grand panda; 3. Le tigre; 4. L’esturgeon Hausen; 5. Hydrastis canadiensis 6. La tortue Macrochelys temmincki (Alligator snapping turtle), 7. La tortue à écaille (Hawksbill), 8. L’acajou (Big Leaf Mahogany) 9. Le perroquet Green-Cheeked; 10. Le Mako ou requin taupe bleu.
3- Von Kreisler, Kristin: «The Compassion of Animals» (Rocklin, CA: Prima Publishing, 1997). Il s’agit d’une compilation de témoignages portant sur la sympathie, la gentillesse et la loyauté que les chiens et autres animaux démontrent envers des animaux qui ne sont pas de la même espèce qu’eux. Pour une discussion portant spécifiquement sur l’interaction entre humains et canins, voir: Serpell, James (dir.) «The Domestic Dog: Its Evolution, Behaviour, and Interactions With People», (Cambridge; New York: Cambridge University Press, 1996); et Wendt, Lloyd M.: «Dogs: A Historical Journey: The Human/Dog Connection Through the Centuries », (New York: Howell Book House, 1996).
4 - Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. et Prasher, D. C. (1994): «Green fluorescent protein as a marker for gene expression»: Science, 263, p. 802-805; Inouye, S. et Tsuji, F.I. (1994) «Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein»: FEBS Letters, 341, p. 277-280.
5- Niedz, Randall P., Sussman, Michael R., Satterlee, John S. (1995): «Green fluorescent protein: an in vivo reporter of plant gene expression», Plant Cell Reports 14, p. 403-406; Amsterdam, A., Lin, S. et Hopkins, N. (1995): «The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos», Devel. Biol. 171, p. 123-129; Pines, J. (1995): «GFP in mammalian cells», Trends Genet. 11, p. 326-327; Holden, C. (1997): «Jellyfish light up mice», Science, 277 (4 July), p. 41; Ikawa, Masahito, Yamada, Shuichi, Nakanishi, Tomoko et Okabe, Masaru: «’Green mice ‘and their potential usage in biological research», FEBS Letters, Vol. 430, No. 1-2, 1998, p. 83; Cormack, B. P., Bertram, C., Egerbom, M., Gold, N. A., Falkow, S. et Brown, A. J. (1997): «Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans», Microbiology 143, p. 303-311; Yeh, E., Gustafson, K. et Boulianne, G. L. (1995): «Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila», Proc. Natl. Acad. Sci. USA 92, p. 7036-7040.
6 - Thorpe-Vargas, S., Coile, D. Caroline., et Cargill, J.: «Variety Spices Up The Canine Gene Pool», Dog World (May 1998), Vol. 83, No. 5, p. 27. Bien qu’il y ait une différence importante entre un chien cloné et un chien transgénique, notons que le «Missyplicity Project» vise à produire le premier chien cloné, à partir d’un chien appelé Missy (croisement de border collie et de husky). Un riche couple (M. et Mme. John Sperling) firent un don de 2,3 millions de dollars en août 1998 à l’Université A & M du Texas afin de permettre l’implémentation et la réalisation du projet dans un délai de deux ans. L’équipe du projet est composée des scientifiques Mark Westhusin, Duane Kraemer et Robert Burghardt. Pour plus d’informations sur le «Missyplicity Project», voir: http://www.missyplicity.com.
7 - Thurston, Mary Elizabeth: «The Lost History of the Canine Race: Our 15,000-Year Love Affair with Dogs» (Kansas City: Andrews &McMeel, 1996).
8 - Burbank, Luther: «The Harvest Of The Years», (Boston; New York: Houghton Mifflin, 1927); Dreyer, Peter. «A gardener touched with genius: the life of Luther Burbank», (Santa Rosa, Calif.: L. Burbank Home & Gardens, 1993).
9 - Les roses communes du vingtième siècle, telles les Hybrid Teas, Floribundas et Grandifloras, furent créées par le croisement des roses européennes et des roses des types China, Tea, européens, méditerranéens et autres durant les XVIIIe et XIXe siècles. Voir: Bennett, J. H. «Experiments in Plant Hybridisation» (London: Oliver and Boyd, 1965) et Beales, Peter. «Roses» (Collins-Harvill [HarperCollins], 1991). Lors d’un voyage en 1998 à l’île Sentosa, au Singapour, j’ai eu l’occasion d’interagir ludiquement avec un ara Catalina, qui se percha sur mon épaule puis sur mon avant-bras. J’ai pu apprécier son coloris distinctif, ainsi qu’observer et apprécier ses interactions avec d’autres aras et humains. Une description de l’ara Catalina peut être trouvée dans: Lantermann, Werner: «Encyclopedia of Macaws» (Neptune City, N. J.: T.F.H., 1995).
10 - Cozzi, E. et White, D. J. G.: «The generation of transgenic pigs as potential organ donors for humans», Nature, Med 1, 1995, pp. 964-966.
11 - Moore, Samuel K.: «Natural Synthetics: Genetically engineered plants produce cotton/polyester blends and nonallergenic rubber», Scientific American, February 1997, p. 36-37.
12 - Cohen, Phil.: «Spinning Steel: Goats and Spiders are working together to create a novel material», New Scientist, Vol. 160, N. 2155, 10 October 1998, p. 11.
13 - Brem, G. et Müller, M. «Large Transgenic Mammals», in Maclean, N. (org.) «Animals With Novel Genes» (New York: U. of Cambridge, 1994), pp. 179-244; Ikawa, M., Kominami, K., Yoshimura, Y., Tanaka, K., Nishimune, Y. et Okabe, M. (1995): «Green fluorescent protein as a marker in transgenic mice». Devel. Growth Differ. 37, p. 455-459; Youvan, D. C. (1995): «Green fluorescent pets», Science, 268 (April 14), p. 264. Pennisi, Elizabeth. «Transgenic Lambs From Cloning Lab», Science, Vol. 277, 1 august 1997, p. 631.
14 - Dyson, Anthony et Harris, John (dir) «Ethics and Biotechnology» (New York: Routledge, 1994); Van Zutphen, L. F. M. et Vann Der Meer, M. (dir): «Welfare Aspects of Transgenic Animals» (Berlin; New York: Springer Verlag, 1995).
15 - Schneider, Keith: «New Animal Forms Will Be Patented», New York Times (April 17, 1987); Alder, Reid G.: «Controlling the Applications of Biotechnology: A Critical Analysis of the Proposed Moratorium on Animal Patenting», Harvard Journal of Law and Technology, vol. 1 (1988); Andrews, Edmund L.: «U. S. Seeks Patent on Genetic Codes, Setting Off Furor», New York Times (October 21, 1991); A1, A12; Marshall, Eliot: «Companies Rush to Patent DNA», Science, Vol. 275, 7 February 1997, p. 780-781. Marshall, Eliot: «The Mouse That Prompted a Roar», Science, Vol. 277, 4 July 1997, p. 24-25.
16 - Penenber, Adam L.: «Gene Piracy», 21C-Scanning the Future, No. 2, 1996, p. 44-50.
17 - Diskson, Robert M. et al: «On/off blinking and switching behaviour of single molecules of green fluorescent protein», Nature, No. 388, p. 355-358 (1997), Letters to Nature. Pour un compte rendu (grand public) des utilisations potentielles de cette technologie, voir: Tatterson, Kathleen G.: «Jellyfish Genes Eyed for Optical Storage», Photonics spectra, September 97, http://www.laurin.com/Content/Sep97/techJellyfish.html.
18 - Brown, Kathryn S.: «With New Technology, Researchers Engineer A Plant For Every Purpose», The Scientist, Vol 9, No. 19, 2 October 1995, p. 14-15; Rissler, Jane et Mellon, Margaret: «The Ecological Risks of Engineered Crops» (Cambridge: MIT Press, 1996).
19 - Gibbs, W. Wayt: «Plantibodies: Human antibodies produced by field crops enter clinical trials», Scientific American, November 1997, p. 44.
20 - Tokar, Brian: «Monsanto: A Checkered History», in «The Monsanto Files», numéro spécial de The Ecologist, Vol. 28, No. 5, September/October 1998, pp. 254-261; Kimbrell, Andrew: «Why Biotechnology and High-Tech Agriculture Cannot Feed the World», in «The Monsanto Files» numéro spécial de The Ecologist, Vol. 28, No. 5, September/October 1998, p. 294-298.
21 - Makowka, L., Cramer, D.V., Hoffman, A., Breeda, M., Sher, L., Eiras-Hreha, G., Tuso, P.J., Yasunaga, C., Cosenza, C. A., Du Wu, G., Chapman, F. A. et Podesta, L.: «The use of a pig liver xenograft for temporary support of a patient with fulminant hepatic failure», Transplantation, No. 59, pp. 1654-1659 (1995); White, D. J. G., Langford, G. A., Cozzi, E., et Young, V. J.: «Production of pigs transgenic for human DAF: A strategy for xenotransplantation», Xenotransplantation, No. 2, p. 213-217, (1995); Cooper, D. K. C., Kemp, E., Platt, J. L. et White, D. J. G. (dir): «Xenotransplantation: the transplantation of organs and tissues between species», (Berlin; New York: Springer, 1997).
22 - La production de sperme de rat dans les testicules d’une souris (ce qui indique clairement que le sperme humain pourrait aussi être produit dans les testicules d’un rat), la division initiale d’une cellule humaine dans l’œuf d’une vache et la création d’un clone embryonnaire d’une femme adulte en Corée du Sud en constituent des cas exemplaires. Voir: Clouthier, David E. et al: «Rat spermatogenesis in mouse testis», Nature, No. 381, p. 418-421 (1996), Letters to Nature; Robl, J.m., Jerry, D.J., Stice, S., Cibelli, J.: «Response - Quiescence in Nuclear Transfer», Science, Vol. 281, No 5383, 1998, p. 1611; BBC Online: «S. Korean scientists claim human cloning success», December 16 1998, (http://www.news.bbc.co.uk).
Originally published in Le Monde, October 5, 2000, pp. 1, 29, 40 <http://www.lemonde.fr/article/0,2320,102022,00.html>.
Les animaux fluorescents fascinent chercheurs, artistes et militaires
De nombreux animaux ou plantes émettent de la lumière. Les biologistes utilisent ce phénomène comme outil d'investigation pour explorer les mécanismes du vivant. Mais la bioluminescence peut aussi trahir les sous-marins ou transformer les lapins en oeuvres d'art
Mis à jour le mercredi 4 octobre 2000
Christiane Galus
EDUARDO KAC, professeur d'art et de technologie à Chicago, l'a baptisée Alba. Cette lapine albinos génétiquement modifiée présente une particularité étonnante : éclairés en lumière ultraviolette, ses poils et ses moustaches blancs, ainsi que ses yeux, prennent une couleur vert fluorescent du plus bel effet.
De nombreux animaux ou plantes émettent de la lumière. Les biologistes utilisent ce phénomène comme outil d'investigation pour explorer les mécanismes du vivant. Mais la bioluminescence peut aussi trahir les sous-marins ou transformer les lapins en oeuvres d'art
Mis à jour le mercredi 4 octobre 2000
Christiane Galus
EDUARDO KAC, professeur d'art et de technologie à Chicago, l'a baptisée Alba. Cette lapine albinos génétiquement modifiée présente une particularité étonnante : éclairés en lumière ultraviolette, ses poils et ses moustaches blancs, ainsi que ses yeux, prennent une couleur vert fluorescent du plus bel effet.
L'Américain, qui se dit « artiste transgénique», l'a présentée à Avignon récemment. Il explique, sur son site Internet, avoir l'intention de créer des «êtres vivants uniques » de ce type à des fins artistiques. Avec un succès très mitigé de la part des associations de défense des animaux et des scientifiques, notamment ceux de l'Institut national de la recherche agronomique (INRA), qui lui ont prêté Alba.
L'animal, qui a été conçu à des fins purement scientifiques, a été confié à Eduardo Kac pour étayer un débat sur les rapports entre science et art. Mais, précise-t-on à l'INRA, il n'est pas question de le lui laisser, ne serait-ce qu'en raison de la réglementation française sur les animaux transgéniques. « Je ne veux plus entendre parler de cette histoire de lapin vert», s'emporte, pour sa part, Louis-Marie Houdebine, directeur de recherches à l'INRA, responsable du groupe de différenciation cellulaire au centre de Jouy-en-Josas (Yvelines), l'un des concepteurs d'Alba. « Cet animal n'est pas une fantaisie de chercheur fou. Elle est le descendant d'animaux transgéniques primaires. Nous avons actuellement en notre possession sept ou huit animaux de ce type, destinés à des études sur le développement embryonnaire.»
Pour leur conférer leurs caractéristiques particulières, les chercheurs de Jouy-en-Josas ont introduit dans le génome des lapins un gène codant pour une protéine fluorescente - green fluorescent protein, ou GFP - présente à l'état naturel chez la méduse Aequorea victoria.
La GFP contient de l'aequorine, une photoprotéine qui émet sa lumière une fois activée par des ions calcium. « Ce gène vert a été modifié pour être utilisé chez le lapin et ciblé pour marcher dans toutes les cellules de l'animal », précise Louis-Marie Houdebine. Il constitue un « biomarqueur » extrêmement important de plus en plus utilisé par les biologistes depuis cinq ans. Son emploi est « simplissime » : quand le gène a été introduit dans un organisme, végétal ou animal, il suscite la production de GFP qui peut facilement être détectée sous la lumière ultraviolette.
En biotechnologie, une de ses principales applications, cette protéine luminescente permet de comprendre le fonctionnement de certains gènes, et la manière dont ils s'expriment sous forme de protéines. « On place la séquence codante de cette GFP sous les promoteurs de gènes dont on cherche à trouver la régulation, explique Yves Chupeau, chercheur à l'INRA, au laboratoire de biologie cellulaire sur les plantes. Cet attelage génétique est introduit ensuite dans l'organisme étudié. Pour en suivre le fonctionnement, il suffit alors d'observer l'évolution des cellules fluorescentes.»
MÉLANGER LES COULEURS
Les spécialistes des protéines ont même perfectionné cet outil étonnant en modulant la longueur d'onde de l'émission lumineuse de la GFP qui peut, aujourd'hui, produire également du bleu ou du rouge. Dans une étude biologique, il est ainsi possible de mélanger plusieurs couleurs. Depuis quelques années, les scientifiques ont introduit le gène codant pour la GFP chez différents animaux : souris, poissons de laboratoire, nématodes, mouches et vers à soie. L'équipe de chercheurs qui a créé le premier ver à soie transgénique ( Le Monde du 7 janvier 1999) a utilisé la GFP « pour savoir si la transgenèse avait réussi », explique Gérard Chavancy, directeur de l'unité nationale séricicole de l'INRA à Lyon.
La GFP est également très utilisée pour mener des recherches fondamentales et appliquées sur la réaction des végétaux au stress ; ou pour « décortiquer» l'activité enzymatique d'une plante face à l'action du milieu, en fonction des variations de la température et de la lumière. La réponse à une attaque virale est également visualisée : « En introduisant le gène de la GFP dans un virus, on parvient à suivre sa propagation quand on irradie la plante en ultraviolet », précise Yves Chupeau. Mais, si son emploi se développe très rapidement, la fluorescence n'est pas le seul biomarqueur « visible » des scientifiques. Depuis dix ou quinze ans, ils ont à leur disposition d'autres outils utilisant une autre lumière du vivant : la bioluminescence, une lumière émise par certains animaux à l'occasion d'une réaction chimique. C'est le cas du gène « bleu », extrait de la bactérie Escherichia coli, utilisé depuis dix ans. Le gène bleu est très utilisé dans les expériences de clonage de gènes réalisées chez les bactéries. Mais son utilisation implique « de tuer la cellule pour faire entrer le substrat sensible, afin que la réaction de la coloration ait lieu », précise Louis-Marie Houdebine.
La luciferase, enzyme catalysant la réaction bioluminescente chez de nombreuses espèces vivantes, sert également de marqueur biochimique depuis une quinzaine d'années. Elle implique également la présence d'un substrat, et la coloration n'est pas visible à l'oeil nu. Elle est utilisée par de très nombreuses équipes de chercheurs. Celle de Louis-Marie Houdebine l'emploie, en particulier, pour tester différents vecteurs d'expression génétique afin de définir la meilleure manière de produire des protéines-médicaments dans le lait : l'analyse du taux de luciferase dans la glande mammaire des souris transgéniques permet de tester la valeur de ces vecteurs.
L'animal, qui a été conçu à des fins purement scientifiques, a été confié à Eduardo Kac pour étayer un débat sur les rapports entre science et art. Mais, précise-t-on à l'INRA, il n'est pas question de le lui laisser, ne serait-ce qu'en raison de la réglementation française sur les animaux transgéniques. « Je ne veux plus entendre parler de cette histoire de lapin vert», s'emporte, pour sa part, Louis-Marie Houdebine, directeur de recherches à l'INRA, responsable du groupe de différenciation cellulaire au centre de Jouy-en-Josas (Yvelines), l'un des concepteurs d'Alba. « Cet animal n'est pas une fantaisie de chercheur fou. Elle est le descendant d'animaux transgéniques primaires. Nous avons actuellement en notre possession sept ou huit animaux de ce type, destinés à des études sur le développement embryonnaire.»
Pour leur conférer leurs caractéristiques particulières, les chercheurs de Jouy-en-Josas ont introduit dans le génome des lapins un gène codant pour une protéine fluorescente - green fluorescent protein, ou GFP - présente à l'état naturel chez la méduse Aequorea victoria.
La GFP contient de l'aequorine, une photoprotéine qui émet sa lumière une fois activée par des ions calcium. « Ce gène vert a été modifié pour être utilisé chez le lapin et ciblé pour marcher dans toutes les cellules de l'animal », précise Louis-Marie Houdebine. Il constitue un « biomarqueur » extrêmement important de plus en plus utilisé par les biologistes depuis cinq ans. Son emploi est « simplissime » : quand le gène a été introduit dans un organisme, végétal ou animal, il suscite la production de GFP qui peut facilement être détectée sous la lumière ultraviolette.
En biotechnologie, une de ses principales applications, cette protéine luminescente permet de comprendre le fonctionnement de certains gènes, et la manière dont ils s'expriment sous forme de protéines. « On place la séquence codante de cette GFP sous les promoteurs de gènes dont on cherche à trouver la régulation, explique Yves Chupeau, chercheur à l'INRA, au laboratoire de biologie cellulaire sur les plantes. Cet attelage génétique est introduit ensuite dans l'organisme étudié. Pour en suivre le fonctionnement, il suffit alors d'observer l'évolution des cellules fluorescentes.»
MÉLANGER LES COULEURS
Les spécialistes des protéines ont même perfectionné cet outil étonnant en modulant la longueur d'onde de l'émission lumineuse de la GFP qui peut, aujourd'hui, produire également du bleu ou du rouge. Dans une étude biologique, il est ainsi possible de mélanger plusieurs couleurs. Depuis quelques années, les scientifiques ont introduit le gène codant pour la GFP chez différents animaux : souris, poissons de laboratoire, nématodes, mouches et vers à soie. L'équipe de chercheurs qui a créé le premier ver à soie transgénique ( Le Monde du 7 janvier 1999) a utilisé la GFP « pour savoir si la transgenèse avait réussi », explique Gérard Chavancy, directeur de l'unité nationale séricicole de l'INRA à Lyon.
La GFP est également très utilisée pour mener des recherches fondamentales et appliquées sur la réaction des végétaux au stress ; ou pour « décortiquer» l'activité enzymatique d'une plante face à l'action du milieu, en fonction des variations de la température et de la lumière. La réponse à une attaque virale est également visualisée : « En introduisant le gène de la GFP dans un virus, on parvient à suivre sa propagation quand on irradie la plante en ultraviolet », précise Yves Chupeau. Mais, si son emploi se développe très rapidement, la fluorescence n'est pas le seul biomarqueur « visible » des scientifiques. Depuis dix ou quinze ans, ils ont à leur disposition d'autres outils utilisant une autre lumière du vivant : la bioluminescence, une lumière émise par certains animaux à l'occasion d'une réaction chimique. C'est le cas du gène « bleu », extrait de la bactérie Escherichia coli, utilisé depuis dix ans. Le gène bleu est très utilisé dans les expériences de clonage de gènes réalisées chez les bactéries. Mais son utilisation implique « de tuer la cellule pour faire entrer le substrat sensible, afin que la réaction de la coloration ait lieu », précise Louis-Marie Houdebine.
La luciferase, enzyme catalysant la réaction bioluminescente chez de nombreuses espèces vivantes, sert également de marqueur biochimique depuis une quinzaine d'années. Elle implique également la présence d'un substrat, et la coloration n'est pas visible à l'oeil nu. Elle est utilisée par de très nombreuses équipes de chercheurs. Celle de Louis-Marie Houdebine l'emploie, en particulier, pour tester différents vecteurs d'expression génétique afin de définir la meilleure manière de produire des protéines-médicaments dans le lait : l'analyse du taux de luciferase dans la glande mammaire des souris transgéniques permet de tester la valeur de ces vecteurs.
La lumière des océans
Que ce soit pour communiquer, pour se camoufler ou pour effrayer un prédateur, de nombreux organismes émettent un signal lumineux. On connaît, sur Terre, les lucioles et quelques champignons lumineux. Mais, dans l'océan, « environ deux tiers des espèces pélagiques émettent une lumière, essentiellement bleu-vert. C'est le cas des bactéries, des poissons, des crevettes, des calmars et du plancton végétal », explique Patrick Geistdoerfer, biologiste (CNRS et Museum national d'histoire naturelle).
Si elle existe à toutes les profondeurs, la bioluminescence est plus importante entre la surface et mille mètres, avec des maxima qui varient suivant l'année, la région et la profondeur. L'équipe de Patrick Geistdoerfer s'efforce, à partir de sondages, de comprendre les raisons de ces fluctuations, dans le but de « réaliser un modèle capable de prédire l'arrivée du phénomène ». Pour quel genre d'application ? Le chercheur français ne le précise pas. Mais, aux Etats-Unis, les militaires américains tentent de s'appuyer sur le phénomène pour détecter les sous-marins en plongée.
Que ce soit pour communiquer, pour se camoufler ou pour effrayer un prédateur, de nombreux organismes émettent un signal lumineux. On connaît, sur Terre, les lucioles et quelques champignons lumineux. Mais, dans l'océan, « environ deux tiers des espèces pélagiques émettent une lumière, essentiellement bleu-vert. C'est le cas des bactéries, des poissons, des crevettes, des calmars et du plancton végétal », explique Patrick Geistdoerfer, biologiste (CNRS et Museum national d'histoire naturelle).
Si elle existe à toutes les profondeurs, la bioluminescence est plus importante entre la surface et mille mètres, avec des maxima qui varient suivant l'année, la région et la profondeur. L'équipe de Patrick Geistdoerfer s'efforce, à partir de sondages, de comprendre les raisons de ces fluctuations, dans le but de « réaliser un modèle capable de prédire l'arrivée du phénomène ». Pour quel genre d'application ? Le chercheur français ne le précise pas. Mais, aux Etats-Unis, les militaires américains tentent de s'appuyer sur le phénomène pour détecter les sous-marins en plongée.
Le Monde daté du jeudi 5 octobre 2000
Artpress, Paris, N. 276 February 2002, p. 51.
L’art transgénique d’Eduardo Kac
Frank Popper
Eduardo Kac est un artiste dont l’œuvre s’inscrit dans un champ qui va de la mythopoétique de l’expérience on-line à l’impact culturel de la biotechnologie, du nouveau statut de la mémoire à l’ère numérique à la responsabilité collective distribuée, de la notion problématique de l’“exotique” à la création de la vie et à l’évolution.
Depuis 1994, Kac a étendu l’art télématique au domaine biologique et créé ainsi une forme d’art à laquelle il a donné le nom de biotélématique. En 1997, dans le contexte de l’œuvre A-positive, il suggérera le terme de “biorobotique”. La biorobotique propose de doter, à l’avenir, le corps des robots d’éléments biologiques qui rempliront certaines fonctions particulières. Un an plus tard, lors d’un projet qui envisageait la création - et l’intégration sociale - d’un chien vert fluorescent, il propose la notion d’art transgénique. En 1999, Kac expose pour la première fois son œuvre d’art transgénique, Genesis, à Ars Electronica à Linz; enfin, l’année suivante, il crée l’œuvre révolutionaire GFP Bunny (Green Fluorescent Protein Bunny). Cette œuvre comprend à la fois la création d’Alba, lapin transgénique avec la protéine vert fluorescent, l’intégration sociale de l’animal et le débat qui en découle. GFP Bunny a vraiment été réalisée au cours de cette anné, et aurait dû être présentée au public en Avignon. Même si l’on peut estimer que cette œuvre s’intègre dans un long courant historique visant à opérer une rencontre entre l’art et la vie, elle lui confère une connotation plus précise en le circonvenant à un événement fondé sur des facteurs biologiques, et plus particulièrement au génie génétique, aux implications culturelles et éthiques propres.
The Eighth Day (Le Huitième Jour), la toute dernière réalisation de l’art transgénique d’Eduardo Kac, offre au public l’occasion de rencontrer une spectaculaire écologie de créatures vertes fluorescentes. Cette œuvre réunit un robot biologique (biobot) connecté à l’Internet, un poisson GFP, des souris GFP, des amibes et des plantes GFP, et une vidéo et le son du flux et du reflux de l’eau en mouvement.
L’impact sur la scéne de l’art contemporain de l’art transgénique d’Eduardo Kac, et tout particulièrement de ses créations audacieuses de nouveaux animaux, a été considérable. Néanmoins, on peut aussi tenir toutes ces inventions et réalisations hardies pour des contributions décisives aux domaines de l’art de la biotechnologie et de la télécommunication, dans la mesure où elles donnent un nouveau sens capital à ce qu’on a appelé jusqu’ici le processus de création et où, simultanément, elles confèrent à l’artiste/inventeur une nouvelle responsabilité tant sociale qu’éthique.
Frank Popper
Eduardo Kac est un artiste dont l’œuvre s’inscrit dans un champ qui va de la mythopoétique de l’expérience on-line à l’impact culturel de la biotechnologie, du nouveau statut de la mémoire à l’ère numérique à la responsabilité collective distribuée, de la notion problématique de l’“exotique” à la création de la vie et à l’évolution.
Depuis 1994, Kac a étendu l’art télématique au domaine biologique et créé ainsi une forme d’art à laquelle il a donné le nom de biotélématique. En 1997, dans le contexte de l’œuvre A-positive, il suggérera le terme de “biorobotique”. La biorobotique propose de doter, à l’avenir, le corps des robots d’éléments biologiques qui rempliront certaines fonctions particulières. Un an plus tard, lors d’un projet qui envisageait la création - et l’intégration sociale - d’un chien vert fluorescent, il propose la notion d’art transgénique. En 1999, Kac expose pour la première fois son œuvre d’art transgénique, Genesis, à Ars Electronica à Linz; enfin, l’année suivante, il crée l’œuvre révolutionaire GFP Bunny (Green Fluorescent Protein Bunny). Cette œuvre comprend à la fois la création d’Alba, lapin transgénique avec la protéine vert fluorescent, l’intégration sociale de l’animal et le débat qui en découle. GFP Bunny a vraiment été réalisée au cours de cette anné, et aurait dû être présentée au public en Avignon. Même si l’on peut estimer que cette œuvre s’intègre dans un long courant historique visant à opérer une rencontre entre l’art et la vie, elle lui confère une connotation plus précise en le circonvenant à un événement fondé sur des facteurs biologiques, et plus particulièrement au génie génétique, aux implications culturelles et éthiques propres.
The Eighth Day (Le Huitième Jour), la toute dernière réalisation de l’art transgénique d’Eduardo Kac, offre au public l’occasion de rencontrer une spectaculaire écologie de créatures vertes fluorescentes. Cette œuvre réunit un robot biologique (biobot) connecté à l’Internet, un poisson GFP, des souris GFP, des amibes et des plantes GFP, et une vidéo et le son du flux et du reflux de l’eau en mouvement.
L’impact sur la scéne de l’art contemporain de l’art transgénique d’Eduardo Kac, et tout particulièrement de ses créations audacieuses de nouveaux animaux, a été considérable. Néanmoins, on peut aussi tenir toutes ces inventions et réalisations hardies pour des contributions décisives aux domaines de l’art de la biotechnologie et de la télécommunication, dans la mesure où elles donnent un nouveau sens capital à ce qu’on a appelé jusqu’ici le processus de création et où, simultanément, elles confèrent à l’artiste/inventeur une nouvelle responsabilité tant sociale qu’éthique.
Traduit par Pierre Camus
Frank Popper, théoricien et commissaire d’expositions, est professeur émérite de l’université Paris VIII.
Frank Popper, théoricien et commissaire d’expositions, est professeur émérite de l’université Paris VIII.